Transgenic Mice Expressing Human Arginase II Gene in Endothelium: Useful for Studying Atherosclerosis and Other Vasculopathies

Cardiovascular disorders associated with endothelial dysfunction, like atherosclerosis, have decreased endothelial nitric oxide (NO) bioavailability. L-arginine, the primary substrate for endothelial nitric oxide synthase (eNOS), is important in the regulation of NO production. Arginase competes with eNOS for L-arginine and has been implicated in the endothelial dysfunction. NIH investigators have generated transgenic mice with human ArgII (hArgII) gene under control of endothelial-specific Tie2 promoter. In these mice, hArgII was expressed at very high levels in all tissues except liver.

Humanized Monoclonal Antibodies Efficient for Neutralization of Tick-Borne Encephalitis Virus (TBEV)

TBEV causes serious illnesses from meningitis to meningo-encephalitis, totaling 3,000 cases of hospitalization in Europe and between 5,000-10,000 cases in Russia reported every year. The Far Eastern hemorrhagic TBEV strains are associated with a mortality rate (between 1-2%), higher than other strains isolated in the Siberia or Western Europe. There is a high proportion (up to 46%) of TBEV patients with temporary or permanent neurological sequelae.

Diagnostic Assays and Methods of Use for Detection of Filarial Infection

The effort targeting the mosquito borne neglected tropical disease lymphatic filariasis for elimination through mass drug administration by 2020 will require accurate, cost effective methods for detecting early infections. The World Health Organization-recommended immunochromatographic test detects adult Wuchereria bancrofti (Wb) antigen in blood, but shows variable efficacy due to the complex life cycle of the parasites and cross reactivity with other organisms. This variability may hinder effective lymphatic filariasis elimination efforts.

Protease Deficient Bacillus anthracis with Improved Recombinant Protein Yield Capabilities

Species of Bacillus, such as Bacillus anthracis, Bacillus cereus, and Bacillus subtilis, are attractive microorganisms for recombinant protein production in view of their fast growth rate, high yield, and ability to secrete produced products directly into the medium. Bacillus anthracis is also attractive in view of its ability to produce anthrax toxin and ability to fold proteins correctly. This application claims a B. anthracis strain in which more than one secreted protease is inactivated by genetic modification.

Human DNA Polymerase Gamma for Testing the Effect of Drugs on Mitochondrial Function

One of the primary means for treating HIV infection is the use of antiviral nucleotide or nucleoside analogs. These analogs work by inhibiting the activity of reverse transcriptase, the enzyme responsible for preparing the HIV genome for integration into the DNA of the host cell. Although these analogs do not have an effect on the polymerases responsible for replicating the human genome, the polymerase responsible for replicating the mitochondrial genome is sensitive to these analogs.

Antagonists of Hyaluronan Signaling for Treatment of Airway Diseases

Airway diseases, such as Asthma and Chronic Obstructive Pulmonary Disease (COPD), constitute a major health burden worldwide. It is estimated, for example, that nearly 15.0% of the adult population in the US are affected with such diseases, and the economic cost burden is over $23 billion annually. Unfortunately, the current options for treatment of such diseases are quite limited, consisting only of bronchodilators and inhaled steroids. The need for a novel and more effective class of therapeutics agents is imperative.

Salen-Manganese Compounds for Therapy of Viral Infections

Salen-manganese compounds are synthetic, stable, low toxicity, low cost agents that may provide protection from immune reaction-related oxidative cell damage associated with many illnesses. In particular, oxidative cell damage has been associated with many viral infections including influenza. This invention demonstrates that treating mice with salen-manganese compounds, after lethal pandemic influenza virus infection, significantly enhances survival. Salen-manganese treatment also reduces lung pathology and also improved cellular recovery and repair.

Antimalarial Inhibitors that Target the Plasmodial Surface Anion Channel (PSAC) Protein and Development of the PSAC Protein as Vaccine Targets

There are two related technologies, the first being small molecule inhibitors of the malarial plasmodial surface anion channel (PSAC) and the second being the PSAC protein itself as a vaccine candidate. The PSAC protein is produced by the malaria parasite within host erythrocytes and is crucial for mediating nutrient uptake. In vitro data show that the PSAC inhibitors are able to inhibit growth of malaria parasites, have high specificity, and low toxicity.