Licensing Availability: Methods of Diagnosing and Treating CHAPLE, A Newly Identified Orphan Disease

This technology is directed towards a potential treatment for a new disease, CHAPLE (Complement Hyperactivation, Angiopathic thrombosis, and Protein-Losing Enteropathy), identified by NIAID researchers. CHAPLE is associated with GI symptoms and vascular thrombosis and is caused by loss-of-function variants in the gene encoding the complement regulatory protein CD55. The disease is caused by enhanced activation of the complement pathway and complement-mediated induction of intestinal lymphangiectasia and protein-losing enteropathy.

One-Step Random Amplification Method to Detect Extremely Low Input Nucleic Acids for Virome, Microbiome, and Metagenomics in Clinical and Biological Specimens

Clinical and biological specimens often contain microbial nucleic acid in extremely low quantities, presenting a significant challenge for the detection of viral and bacterial pathogens. This also prevents direct sequencing of non-culturable samples using next-generation sequencing (NGS). Currently, NGS library preparation on most platforms requires 0.1 ng to 10 µg of DNA or cDNA, while microbial or viral nucleic acids in clinically relevant specimens, such as blood, serum, respiratory secretions, cerebral spinal fluid, and stool, often contain less than 0.1 ng.

Therapeutic and Diagnostic Targets for Severe RSV Infection

Respiratory Syncytial Virus (RSV) infects nearly all children by their second birthday. RSV usually causes mild respiratory illness, however, a subset of patients experience severe infection that require hospitalization. Successful host defense against viral pathogens requires rapid recognition of the virus and activation of both innate and adaptive immunity. Toll-Like Receptors (TLRs) are responsible for mounting an innate immune response and genetic variations within TLRs modulate severity of infection.

COMBINATION THERAPIES FOR COVID-19 (SARS-COV-2)

The coronavirus disease 2019 (COVID-19) is caused by a novel RNA enveloped coronavirus, SARS-CoV-2 when the virus enters human airway cells via an ACE2-mediated entry process. This entry pathway is facilitated by the cell surface heparan sulfate proteoglycan (HSPG), which enhances viral attachment to the cell surface. Researchers at NIDDK and NCATS have discovered a collection of FDA-approved drugs that can interfere with the entry of SARS-CoV-2. These drugs can be grouped into three classes based on the distinct steps in the viral entry pathway that they target.

Reducing Bloodstream Neutrophils as a Treatment for Lung Infection and Inflammation

During lung infection, bloodstream neutrophils (PMNs) responding to infection travel to the airspace lumen. Although successful arrival of microbicidal PMNs to the airspace is essential for host defense against inhaled pathogens, excessive accumulation of PMNs in the lung contributes to the pathogenesis of several prevalent lung disorders, including acute lung injury, bronchiectasis, and COPD. Unfortunately, there is no treatment for controlling PMN accumulation in the lung.

Hybridomas to Human Immunoglobulins for SARS-CoV-2 Diagnostics and Additional Indications

Immunoglobulins play a key role in the immune system. CDC has developed and tested hybridoma cell lines (monoclonal antibody (mAb) clones) for human IgG and other immunoglobulins. The mAbs generated from those hybridomas could be used as a reagent (second Ab) of anti-human immunoglobins in a diagnostic assay for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus that causes COVID-19 (coronavirus disease 2019) and other assays that detect antigen specific antibodies from human sera.

Diagnostic Assay to Detect Group C Rotavirus in Humans and Animals—Monoclonal Antibody-based ELISA (Enzyme-linked Immunosorbent Assay)

Rotaviruses cause severe gastroenteritis in humans and animals globally. Currently, there are eight known serogroups (A-H) of rotaviruses. Group C rotavirus (GpC RV) causes sporadic cases and outbreaks of acute diarrhea in children and adults worldwide. GpC RV is also associated with diarrhea in swine. Currently, no simple and reliable diagnostic test exists for GpC RV, so disease prevalence remains unknown.

Novel Activators of Pyruvate Kinase for the Treatment of Hemolytic Anemias

This technology includes the development and use of small molecule activators of pyruvate kinase (PK) for the treatment of inherited nonspherocytic hemolytic anemia, including PK deficiency. PK deficiency is caused by an inherited deficiency in an enzyme that reduces the lifespan of red blood cells. More than 150 unique mutations have been identified in the PK gene that lead to decreased activity in this essential enzyme in the glycolytic pathway. The prematurely lysed red blood cells can lead to jaundice, splenomegaly, and a hemolytic anemia.

Cloned Genomes Of Infectious Hepatitis C Virus And Uses Thereof

The current invention provides nucleic acid sequences comprising the genomes of infectious hepatitis C viruses (HCV) of genotype 1a and 1b. It covers the use of these sequences, and polypeptides encoded by all or part of the sequences, in the development of vaccines and diagnostic assays for HCV and the development of screening assays for the identification of antiviral agents for HCV.