COMBINATION THERAPIES FOR COVID-19 (SARS-COV-2)

The coronavirus disease 2019 (COVID-19) is caused by a novel RNA enveloped coronavirus, SARS-CoV-2 when the virus enters human airway cells via an ACE2-mediated entry process. This entry pathway is facilitated by the cell surface heparan sulfate proteoglycan (HSPG), which enhances viral attachment to the cell surface. Researchers at NIDDK and NCATS have discovered a collection of FDA-approved drugs that can interfere with the entry of SARS-CoV-2. These drugs can be grouped into three classes based on the distinct steps in the viral entry pathway that they target.

Reducing Bloodstream Neutrophils as a Treatment for Lung Infection and Inflammation

During lung infection, bloodstream neutrophils (PMNs) responding to infection travel to the airspace lumen. Although successful arrival of microbicidal PMNs to the airspace is essential for host defense against inhaled pathogens, excessive accumulation of PMNs in the lung contributes to the pathogenesis of several prevalent lung disorders, including acute lung injury, bronchiectasis, and COPD. Unfortunately, there is no treatment for controlling PMN accumulation in the lung.

Hybridomas to Human Immunoglobulins for SARS-CoV-2 Diagnostics and Additional Indications

Immunoglobulins play a key role in the immune system. CDC has developed and tested hybridoma cell lines (monoclonal antibody (mAb) clones) for human IgG and other immunoglobulins. The mAbs generated from those hybridomas could be used as a reagent (second Ab) of anti-human immunoglobins in a diagnostic assay for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus that causes COVID-19 (coronavirus disease 2019) and other assays that detect antigen specific antibodies from human sera.

Diagnostic Assay to Detect Group C Rotavirus in Humans and Animals—Monoclonal Antibody-based ELISA (Enzyme-linked Immunosorbent Assay)

Rotaviruses cause severe gastroenteritis in humans and animals globally. Currently, there are eight known serogroups (A-H) of rotaviruses. Group C rotavirus (GpC RV) causes sporadic cases and outbreaks of acute diarrhea in children and adults worldwide. GpC RV is also associated with diarrhea in swine. Currently, no simple and reliable diagnostic test exists for GpC RV, so disease prevalence remains unknown.

Novel Activators of Pyruvate Kinase for the Treatment of Hemolytic Anemias

This technology includes the development and use of small molecule activators of pyruvate kinase (PK) for the treatment of inherited nonspherocytic hemolytic anemia, including PK deficiency. PK deficiency is caused by an inherited deficiency in an enzyme that reduces the lifespan of red blood cells. More than 150 unique mutations have been identified in the PK gene that lead to decreased activity in this essential enzyme in the glycolytic pathway. The prematurely lysed red blood cells can lead to jaundice, splenomegaly, and a hemolytic anemia.

Cloned Genomes Of Infectious Hepatitis C Virus And Uses Thereof

The current invention provides nucleic acid sequences comprising the genomes of infectious hepatitis C viruses (HCV) of genotype 1a and 1b. It covers the use of these sequences, and polypeptides encoded by all or part of the sequences, in the development of vaccines and diagnostic assays for HCV and the development of screening assays for the identification of antiviral agents for HCV.

Small Molecule Inhibitors of the Ferroptosis Programmed Cell Death Pathway

This technology includes the identification and use of small molecules to rescue cells undergoing ferroptosis, a type of programmed cell death. These small molecules can be used as treatments in situations where epithelial cells are being damaged, including respiratory disorders, brain injury (including traumatic brain injury), renal injury, radiation-induced injury, and neurodegenerative disorders. Ferroptosis is a type of programmed cell death that is triggered by an increased presence of oxidants.

Process for Synthesis of VBP15 as a Treatment for Duchenne Muscular Dystrophy

This technology includes processes for the synthesis of VBP15 (17a,21-dihydroxy-16a-methyl-pregna-1,4,9(11)-triene-3,20-dione) of high purity and large quantities as a treatment for Duchenne muscular dystrophy. The synthesis of VBP15 has several deficiencies which has hindered larger-scale preparation for clinical evaluation and potential manufacturing. The deficiencies included formation of significant levels of undesired epoxide impurity, formation of undesired ketone impurity, and resultant need for costly chromatographic purification.

Rapid and Robust Differentiation of Human iPSCs into Motor Neurons

This technology includes a system that allows for robust differentiation of human-induced pluripotent stem cells (iPSC) into motor neurons within a time frame of 7 to 10 days. To differentiate the iPSC, a stable transgene is inserted into the CLYBL safe harbor locus in the human genome using TALENs. The transgene allows for doxycycline-inducible expression of the transcription factors (NGN2, ISL1, and LHX3) that are needed for the cells to differentiate to motor neurons. The technology is described in detail in the protocol paper published by Fernandopulle et al, cited below.