Self-Assembled Ferritin Nanoparticles Expressing Hemagglutinin as an Influenza Vaccine

NIH inventors at the Vaccine Research Center have developed a novel influenza virus hemagglutinin (HA)-ferritin nanoparticle influenza vaccine that is easily manufactured, potent, and elicits broadly neutralizing influenza antibodies against multiple strains of influenza. This novel influenza nanoparticle vaccine elicited two types of broadly neutralizing, cross-protective antibodies, one directed to the highly conserved HA stem and a second proximal to the conserved receptor binding site (RBS) of the viral HA, providing a new platform for universal and seasonal influenza.

Salen-Manganese Compounds for Therapy of Viral Infections

Salen-manganese compounds are synthetic, stable, low toxicity, low cost agents that may provide protection from immune reaction-related oxidative cell damage associated with many illnesses. In particular, oxidative cell damage has been associated with many viral infections including influenza. This invention demonstrates that treating mice with salen-manganese compounds, after lethal pandemic influenza virus infection, significantly enhances survival. Salen-manganese treatment also reduces lung pathology and also improved cellular recovery and repair.

Antimalarial Inhibitors that Target the Plasmodial Surface Anion Channel (PSAC) Protein and Development of the PSAC Protein as Vaccine Targets

There are two related technologies, the first being small molecule inhibitors of the malarial plasmodial surface anion channel (PSAC) and the second being the PSAC protein itself as a vaccine candidate. The PSAC protein is produced by the malaria parasite within host erythrocytes and is crucial for mediating nutrient uptake. In vitro data show that the PSAC inhibitors are able to inhibit growth of malaria parasites, have high specificity, and low toxicity.

Methods and Composition for Identification of Variants of JC Virus DNA; An Etiologic Agent for Progressive Multifocal Leukoencephalopathy (PML)

JC Virus causes a fatal disease in the brain called progressive multifocal leukoencephalopathy (PML) that occurs in many patients with immunocompromised conditions. The finding of JCV DNA in the patients with neurological symptoms of PML is a diagnostic criterion and is needed to confirm the diagnosis of PML to rule out other neurological conditions. Certain JC virus variants are known to have a greater association with PML. For example, "Prototype" JC virus is far more pathogenic than "Archetype" JC virus.

Parvovirus B19 Vaccine

Parvovirus B19 (B19V) infection causes fifth disease, a disease characterized by rashes to the face and other parts of the body that primarily affects children. However, adults can also develop fifth disease and it can lead to more severe conditions. Patients that are immunocompromised, such as those who are HIV infected, organ transplant recipients, and cancer patients, can be particularly susceptible to more severe outcomes from B19V infection. Infection can also cause anemia and in pregnant women, it can lead to hydrops fetalis.

Safer Attenuated Virus Vaccines with Missing or Diminished Latency of Infection

This technology describes recombinant viruses that have weakened ability to establish and/or maintain latency and their use as live vaccines. The viruses have one or more genetic mutations that allow for continued replication but that inhibit latency. The vaccine materials and methods for their construction are exemplified with the virus that causes chickenpox and whose latent infection results in shingles, a condition that affects up to an estimated 1 million people per year in the United States alone. Additionally, there are veterinary applications of this technology.

Simultaneous Detection of Non-pneumophila Legionella Strains Using Real-time PCR

Legionnaires' disease is caused by a type of bacteria called Legionella. CDC scientists have developed a real-time multiplex PCR assay for diagnosis and identification of Legionella strains. The assay consists of five sets of primers (targeting L. bozemanii, L. dumoffii, L. feeleii, L. longbeachae, or L. micdadei) and corresponding probes. Each probe is labeled with a different fluorophore which allows the detection of a particular strain in a single tube reaction.