Capsid-Free AAV Vectors for Gene Delivery and Their Use for Gene Therapy

The invention concerns novel capsid-free AAV vectors that can be used for gene delivery and gene therapy applications. The invention provides for a linear nucleic acid molecule comprising in this order: a first adeno-associated virus (AAV) inverted terminal repeat (ITR), a nucleotide sequence of interest, and a second AAV ITR, wherein said nucleic acid molecule is devoid of AAV capsid protein coding sequences. The said nucleic acid molecule can be applied to a host at repetition without eliciting an immune response.

Polyvalent Influenza Virus-Like Particles (VLPs) and Use as Vaccines

Influenza virus is a major public health concern, causing up to 500,000 deaths annually. The current strategy of reformulating vaccines annually against dominant circulating strains leads to variable protective efficacy and is unlikely to protect against novel influenza viruses with pandemic potential. Thus, there is a great need for a vaccine that provides “universal” protection against influenza viruses.

Pyrophosphate Analog HIV-1 Reverse Transcriptase Inhibitors

The invention relates to compounds that inhibit HIV-1 DNA synthesis mediated by reverse transcriptase (RT). HIV-1 DNA synthesis by RT utilizes deoxynucleoside 5’-triphosphate (dNTP) as substrate and like many other enzymes, the reaction is reversible. Pyrophosphate analogs like imidodiphosphate strongly promote reverse reaction dNTP products containing the imidodiphosphate group instead of the naturally occurring pyrophosphate group. This imidodiphosphate-containing dNTP was found to be a potent inhibitor of the forward RT reaction.

Development of a Transferrable Norwalk Virus Epitope and Detector Monoclonal Antibody

Noroviruses are now recognized as the major cause of non-bacterial gastroenteritis in all age groups, and efforts are underway to develop an effective vaccine. The lack of a robust cell culture system for human noroviruses has complicated vaccine development. Hence, norovirus virus like particles (VLPs) have played an important role in the understanding of virus structure, immune response, antigenic diversity, and vaccine design.

Monoclonal Antibody Specific for DNA/RNA Hybrid Molecules

NIAID has a hybridoma available for non-exclusive licensing that produces a monoclonal antibody specific for DNA/RNA hybrids. This antibody, which has been extensively characterized by NIH researchers, is already a widely-used research tool. It is currently the only monoclonal antibody available that is specific for DNA/RNA hybrids, making it a unique reagent. It is used in immuno-fluorescence (IF) microscopy, where it can be used to detect sites of transcriptional activity and potentially sites of viral replication.

A Novel Thermal Method to Inactivate Rotavirus for Use in Vaccines

Rotavirus is a highly contagious, diarrhea-inducing pathogen that annually causes approximately 250,000 deaths worldwide and millions of hospitalizations, especially afflicting infants and young children. One strategy to combat this virus is through vaccination. Continuing safety and efficacy concerns with the currently existing live, oral vaccines against rotavirus have led researchers to search for alternative treatment approaches, such as vaccines containing inactivated rotavirus.