Murine Monoclonal Antibodies Effective To Treat Respiratory Syncytial Virus

Available for licensing through a Biological Materials License Agreement are the murine MAbs described in Beeler et al, "Neutralization epitopes of the F glycoprotein of respiratory syncytial virus: effect of mutation upon fusion function," J Virol. 1989 Jul;63(7):2941-2950 (PubMed abs). The MAbs that are available for licensing are the following: 1129, 1153, 1142, 1200, 1214, 1237, 1112, 1269, and 1243. One of these MAbs, 1129, is the basis for a humanized murine MAb (see U.S.

Mouse Lacking the Chemokine Receptor CX3CR1

This mouse has been generated by targeted gene disruption. The mouse provides a model to investigate the function of the chemokine receptor CX3CR1, which is a proinflammatory receptor for the leukocyte chemoattractant CX3CL1 (aka fractalkine). As an example, the mouse is in use in the study of atherosclerosis. Further, the mouse may serve as a model study the role of the immune system during infection with pathogens as well as other immunologically mediated diseases and responses to tumors.

Enzymatically-Active RNA-Dependent RNA Polymerase From a Human Norovirus (Calicivirus)

The noroviruses (formerly known as “Norwalk-like viruses”) are associated with gastroenteritis outbreaks, affecting large numbers of individuals each year. Emerging data are supporting their increasing recognition as important agents of diarrhea-related morbidity and mortality. The frequency with which noroviruses are associated with gastroenteritis as “food and water-borne pathogens” has led to the inclusion of caliciviruses as Category B Bioterrorism Agents/Diseases.

Construction of an Infectious Full-Length cDNA Clone of the Porcine Enteric Calicivirus RNA Genome

Porcine enteric calicivirus (PEC) is a member of the genus Sapovirus in the family Caliciviridae. This virus causes diarrheal illness in pigs, and is presently the only enteric calicivirus that can be grown in cell culture. In addition to its relevance to veterinary medicine as a diarrheal agent in pigs, PEC serves as an important model for the study of enteric caliciviruses that cause diarrhea and that cannot be grown in cell culture (including the noroviruses represented by Norwalk virus).

DLX3 Knockout Mice for the Study Mouse Models of Tooth, Hair, and Epidermal Defects

This technology includes K14creDLX3 conditional knockout (cKO) mice which will be used to study ectodermal dysplasia disorders such as Amelogenesis Imperfecta, and to study molecular mechanisms of DLX3 regulation in skin and ectodermal appendages. DLX3 is expressed in the epidermis, hair matrix cells in the hair follicle and in the mesenchymal and epithelial compartment of the tooth during embryonic development. To determine the transcriptional network dependent on DLX3-function, we will generate and analyze an epithelial-specific conditional knockout of DLX3.

Respirator Protection Devices and Methods to Detect and Remove Toxic Gases from the Air - Cobinamide Encapsulated Silica-based Materials for Respirator Canisters

A respirator protects the wearer from inhaling dangerous substances, such as chemicals and infectious particles. CDC developed devices and methods to detect and remove chemicals such as hydrogen cyanide, cyanogen, hydrogen sulfide, nitrite, and nitric oxide from the air for those wearing respirators. Cobinamide (a Vitamin B12 analog with a high affinity to cyanide) molecules are immobilized within a silica matrix that allows for the infiltration and containment of gaseous chemicals.

Composite Gels and Methods of their Use in Tissue Repair, Drug Delivery, and as Implants

Gel materials, particularly hydrogels, typically lose their mechanical strength and stiffness as they swell. This property  limits their use in both biological (e.g., cartilage and ECM repair) and non-biological (e.g., sealant) applications. Innovative materials in both medical and non-medical application areas are sorely needed.

MADCO-Accelerated Multidimensional Diffusion MRI

Although multidimensional diffusion/relaxation NMR experiments are widely used in materials sciences and engineering applications, preclinical and clinical MRI applications of these techniques were not feasible. Moreover, higher-field MRI scanners posed another obstacle to translation of this NMR method. Their specific absorption rate (SAR) limits the use of multi-echo or CPMG pulse trains, so that the large amounts of data required by these methods cannot be collected in vivo due to exceedingly long scan times.

Devices for Improved Tissue Cryopreservation and Recovery

Problem: Cryopreservation is a process where living biological materials like cells, tissues, and cell therapies (which are susceptible to damage caused by unregulated chemical kinetics) are preserved by cooling to very low temperatures in the presence of specific cryopreservation media that protects the biological material from damage. In order to be used, the biological material ideally should be thawed in a controlled manner that minimizes damage and desirably brings the material back to a viable state.