Device for Selective Partitioning of Frozen Cellular Products

Cryopreservation using liquid nitrogen frozen polyvinyl bags allows for storing cellular materials for extended periods while maintaining their activity and viability. Such bags are commonly used in the clinic to store blood products including blood cells, plasma, hematopoietic stem cells, umbilical cord blood for future uses including transplantation. These materials, typically obtained in limited quantities, may be of great therapeutic value, as is the case of stem cells or cord blood derived cells which can be used to potentially treat a number of diseases.

T-Cell-Specific Gfi-1 Knockout Mouse

This is a mouse model available to study T-cell differentiation. Growth factor independent 1 (GFi-1) is a transcriptional repressor that is transiently induced during T-cell activation. This knockout mouse line is a GFi-1[flox/flox] introduced into a mouse Cre controlled by a CD4 promoter, which allows selective removal of GFi-1 exclusively in T-cells. It has thus-far been used to demonstrate that GFi-1 plays a critical role in enhancing Th2 cell expansion and repressing induction of Th17 and CD103+ iTreg cells.

Conditional V2 Vasopressin Receptor Mutant Mice as a Model to Study X-linked Nephrogenic Diabetes Insipidus (XNDI)

X-linked nephrogenic diabetes insipidus (XNDI) is a severe kidney disease caused by inactivating mutations in the V2 vasopressin receptor (V2R) gene that result in the loss of renal urine-concentrating ability. At present, no specific pharmacological therapy has been developed for XNDI, primarily due to the lack of suitable animal models. This technology provides a unique and viable animal model of XNDI. NIH investigators have generated mice in which the V2R gene could be conditionally deleted during adulthood by administration of 4-OH-tamoxifen.

New Mouse Strain with Conditional Deletion of SMAD7: Analysis of Disease Processes Involving Immunological, Fibrotic or Cardiovascular Indications

SMAD7 conditional knockout mice are available for licensing. SMAD7 can be knocked out by breeding with CRE-recombinase transgenic mice with a variety of promoters to yield tissue or cell type-specific deletions of SMAD7. SMAD7 has been shown to play a role in bone morphogenesis, cardiovascular tissue generation, immune regulation and fibrosis. Therefore, these mice provide a unique model to examine the role of the SMAD7 gene in disease processes that involve immunological, fibrotic, or cardiovascular components.

Erythroid Progenitor Cell Line for Hematological Disease Applications

Plasmodium vivax (malaria) is a significant health concern in many parts of Asia, Latin America, North Africa, and the Middle East. There is a lack of continuous culture systems for this pathogen. The subject technology is an erythroid progenitor continuous cell line (termed CD36E) identified by erythroid markers CD36, CD33, CD44, CD71, CD235, and globoside. These CD36E cells are heterozygous for Fya and Fyb (Duffy antigen). Due to recent evidence that Plasmodium vivax (P. vivax) can infect erythroid progenitor cells (reference: YX Ru et al.

Mouse Model for Cerebral Cavernous Malformation, an Inherited Brain Disorder

Cerebral Cavernous Malformation (CCM) is a brain disease affecting up to 0.5% of the worldwide population. CCM is characterized by grossly dilated vessels prone to leaking and hemorrhage which result in severe headaches, seizures, and strokes. Inherited forms of the disease are due to mutations in one of three loci, CCM1, CCM2, and CCM3. Prior efforts to develop mice with targeted null mutations in Ccm1, Ccm2, or Ccm3 have been unsuccessful, as such mutations result in embryonic death.

Protein Nanoparticles for Antigen Display in Vaccines

The technology relates to a protein-based nanoparticle platform that allows presentation of immunogenic molecules such as influenza virus antigens. This protein platform is made up of hepatitis B capsid/core proteins. The core proteins contain immunogenic loop c/e1, where other antigens can be inserted and the chimeric protein retains the ability to form capsid-like particles. The technology describes the insertion of one or more copies of influenza epitopes derived from the globular head or the stem region of hemagglutinin protein into or around the c/e1 loop of the core protein.

Broadly Protective Influenza Vaccine Comprising a Cocktail of Inactivated Avian Influenza Viruses

There is a great need for broadly protective, “universal” influenza virus vaccines given the antigenic drift and shift of influenza viruses and the variable protective efficacy of the current influenza vaccines. This technology relates to a broadly protective, “universal” influenza vaccine candidate composed of a cocktail of different low pathogenicity avian influenza virus subtypes inactivated by betapropiolactone (BPL).