The Use of Rabbits with Defined Immunoglobulin Light Chain Genes (C<sub>kappa</sub> b allotypes) to Optimize Production of Chimeric and Humanized Monoclonal Antibodies for Therapeutic, Imaging and Diagnostic Applications

Biological materials are important research tools that can be used for diagnostic as well as therapeutic purposes. Antibodies have become viable drugs in the market today and there is a general market need for systems that may facilitate production of efficient and effective antibodies. In recent years, monoclonal antibodies have gained significant importance in their use, both as diagnostics and therapeutics, to intervene and combat diseases such as cancer, cardiovascular diseases, and infections.

A Nurr1-Knockout Mouse Model for Parkinson's Disease and Stem Cell Differentiation

The researchers have generated Nurr1-knockout mice via genomic locus inactivation using homologous recombination.

Transcription factor Nurr1 is an obligatory factor for neurotransmitter dopamine biosynthesis in ventral midbrain. From a neurological and clinical perspective, it suggests an entirely new mechanism for dopamine depletion in a region where dopamine is known to be involved in Parkinson's disease. Activation of Nurr1 may be therapeutically useful for Parkinson's disease patients; therefore, the mice would be useful in Parkinson's disease research.

A New Mouse Monoclonal Antibody Against Human Microphthalmia Transcription Factor (MITF)

Micropthalmia Transcription Factor (MITF) plays an important role in melanocyte development and melanoma growth. MITF is important for embryonic development, regulating the generation of pigment cells and formation of melanomas and other tumors. MITF is made in various isoforms that may play unique roles for different organs during different developmental periods. Additionally, tissue MITF levels can serve as a molecular marker for the diagnosis of metastatic melanoma and therapeutic response.

Full-Length cDNA Clone Representing the Consensus Sequence of the RNA Genome of a Human Norovirus (strain MD145-12) That Encodes Biologically Active Proteins

The invention provides for a full-length cloned cDNA copy of the RNA genome of a predominant norovirus strain (Genogroup II.4) designated MD145-12 that was associated with human gastrointestinal illness. The noroviruses, which were formerly known as "Norwalk-like" viruses are estimated to cause 23 million cases of acute gastroenteritis in the USA each year. The virus has been designated into category B of the CDC biodefense-related priority pathogens because it can be used as an agent of bioterrorism.

Method to Detect and Quantify In Vivo Mitophagy

This technology includes a transgenic reporter mouse that expresses a fluorescent protein called mt-Keima, to be used to detect and quantify in vivo mitophagy. This fluorescent protein was originally described by a group in Japan and shown to be able to measure both the general process of autophagy and mitophagy. We extended these results by creating a living animal so that we could get a measurement for in vivo mitophagy. Our results demonstrate that our mt-Keima mouse allows for a straightforward and practical way to quantify mitophagy in vivo.

Antibody to Mitochondrial Uniporter (MCU

This technology includes a generated polyclonal antibody in rabbit that detects the mitochondrial uniporter (MCU) protein. This antibody was created by immunizing rabbits with a synthesized sequence of the MCU protein and can be used to identify and quantify MCU protein in various tissues. The polyclonal nature of the antibody ensures it recognizes multiple epitopes on the MCU, enhancing detection reliability. This technology is crucial for understanding MCU's role in mitochondrial function and mammalian physiology.

Blocking CD38 using Protein G Complexed Daratumumab Antibodies (PGDARA) to Protect Natural Killer Cells from Daratumumab-induced Apoptosis and Cell Death for the Treatment of Multiple Myeloma

This technology includes the method of blocking CD38 in expanded natural killer (NK) cell therapy in combination with daratumumab in patients with multiple myeloma. Our in vitro studies have already confirmed the addition of NK cells to myeloma cells that have been exposed to daratumumab enhances myeloma killing compared to single agent treatment.

A Neural Stem Line from a Niemann Pick C (NPC) Type 1 Patient for Therapy Development

This technology includes a neural stem cell (NSC) line derived from a Niemann Pick C (NPC) patient, aimed at advancing research and drug development for NPC, an inherited neurodegenerative disorder characterized by the accumulation of cholesterol in neurons. The NSCs, which serve as a crucial intermediate cell type, can be differentiated into any neuronal or glial cell of the brain or spinal cord under appropriate culture conditions. These cells originate from fibroblasts reprogrammed into induced pluripotent stem cells.

Conditional Cell Immortalization Plasmid for Basic Science Research

This technology includes a novel plasmid design for cell immortalization. It uniquely combines the conditional activation of human telomerase and c-myc genes through cumate addition, a method distinct from traditional immortalization techniques which commonly use SV40 T-antigen, telomerase, or c-myc. This plasmid also includes a GFP reporter and a puromycin resistance gene, enhancing the efficiency of the immortalization process.