A Method to Expand a Population of Regulatory T Cells Optimal for the Treatment of Autoimmune Diseases

The transfusion of regulatory T cells (Tregs) has been used in the clinic to successfully prevent graft vs. host disease and is currently being evaluated in the treatment of other autoimmune diseases, such as organ graft rejection, type 1 diabetes and multiple sclerosis. Prior to transfusion, adoptive regulatory T cell transfer requires the expansion of regulatory T cells in culture; this results in a mixed population of regulatory T cells that limits the effectiveness of the transferred cells.

Methods and Composition for Identification of Variants of JC Virus DNA; An Etiologic Agent for Progressive Multifocal Leukoencephalopathy (PML)

JC Virus causes a fatal disease in the brain called progressive multifocal leukoencephalopathy (PML) that occurs in many patients with immunocompromised conditions. The finding of JCV DNA in the patients with neurological symptoms of PML is a diagnostic criterion and is needed to confirm the diagnosis of PML to rule out other neurological conditions. Certain JC virus variants are known to have a greater association with PML. For example, "Prototype" JC virus is far more pathogenic than "Archetype" JC virus.

Intra-bone Drug Delivery Device and Method

The invention pertains to devices for directly infusing cellular therapeutics into patient bone. The device monitors intra-bone pressure using pressure sensors disposed at its proximal end and adjusts infusion pressures during infusion such that intra-bone pressure does not exceed levels of systemic blood pressure. Such devices, apparatus and methods are particularly suitable for use in performing bone marrow transplants, particularly transplants that utilize cord blood as a stem cell source.

Diffusion Through Skull as Route of Delivery for Treatment of Brain Injury and Disease

Traumatic Brain injury (TBI) often results from head impact and is a major cause of death and disability. Brain injuries vary in severity and can be associated with hemorrhaging, swelling, inflammation, and death of brain tissue. Inventors at NINDS developed a novel approach to treating brain injuries that involves transcranial application of small molecules.

Use of Antisense Oligodeoxynucleotides for Inhibiting JC Virus

Progressive multifocal leukoencephalopathy (PML) is a rare, fatal demyelinating disease of the brain caused by the polyomavirus JC (JCV) under immunosuppressive conditions. It is pathologically characterized by progressive damage of white matter of the brain by destroying oligodendrocytes at multiple locations. Clinically, PML symptoms include weakness or paralysis, vision loss, impaired speech, and cognitive deterioration. The prognosis of PML is generally poor. No effective therapy for PML has been established.

Novel Dopamine D2 Receptor Antagonists and Methods of Their Use

Investigators at the NIH have identified a series of novel, small molecule antagonists of the dopamine D2 receptor. Among the dopamine receptor (DAR) subtypes, D2 DAR is arguably one of the most validated drug targets in neurology and psychiatry. For instance, all receptor-based anti-Parkinsonian drugs work via stimulating the D2 DAR, whereas all FDA approved antipsychotic agents are antagonists of this receptor. Unfortunately, most agents that act as antagonists of D2 DAR are problematic, either they are less efficacious than desired or cause multiple adverse effects.

A Current Amplifier for Local Coil Pre-amplification of NMR/MRI Signals

The magnetic resonance imaging (MRI) systems are used for a variety of imaging application. The present invention discloses an improving MRI device and method by amplifying signals received by resonant NMR coils of MRI systems. It utilizes positive feedback from low-noise Field-Effect Transistor to amplify the signal current that can be coupled out to receiving loops positioned externally without loss in sensitivity. Therefore, the NMR coil can be flexibly positioned near internal tissues and used to develop high-resolution images in highly invasive situations.

Development of a Polyclonal Antibody for Neuroligin 4 pThr707 and a Polyclonal Antibody for Neuroligin 1 pTHR739

This invention includes the generation and use of two polyclonal antibodies that specifically recognizes the phosphorylation site pThr707 of Neuroligin 4 and pThr739 of Neuroligin 1. A peptide of the site around the phosphorylation site was generated and injected into rabbits to create an immune response. Serum was collected from the rabbits that was then affinity purified. The specificity of the resulting polyclonal antibodies was then determined using biochemical techniques.

A Device to Measure Force Continuously During Handgrip Contraction and Relaxation for Myotonic Dystrophies

This invention relates to two devices that reliably, sensitively, and accurately measures force during handgrip contraction and subsequent relaxation. A delayed relaxation after a sustained and forceful handgrip is a cardinal symptom of myotonic dystrophies (DM). This delayed relaxation, handgrip myotonia, may be a therapeutic response biomarker in clinical trials.

OASIS: Automated brain lesion detection using cross-sectional multimodal magnetic resonance imaging

This invention is a novel statistical method for automatically detecting lesions in cross-sectional brain magnetic resonance imaging (MRI) studies. OASIS uses multimodal MRI from one image acquisition session and produces voxel-level probability maps of the brain that quantifies the likelihood that each voxel is part of a lesion. Binary lesion segmentations are created from these probability maps using a validated population-level threshold. In this application, fluid attenuated inversion recovery (FLAIR), proton density (PD), T2-weighted, and Tl-weighted volumes were used.