High Relaxivity Mulitivalent Gadolinium on a Peptide Scaffold for Targeted MRI Applications in Disease Diagnosis

This technology includes a peptide containing alternating Alanine and Lys(DOTA-Gd) residues can be used to increase the MRI relaxivity of a peptide. The low molecular weight construct can be appended to proteins, antibodies and peptides to increase MRI signals. This approach offers advantages over previous dendrimeric constructs.

Astrocyte Differentiation of Neural Stem Cells with StemPro Embryonic Stem Cell Serum Free Medium for Research and Potential Therapeutic Use

This technology includes an innovative method for differentiating astrocytes from neural stem cells (NSCs). The process involves using Life Technologies StemPro embryonic stem cell serum-free medium to initially guide NSCs towards a neuronal lineage. Over a period of 28-35 days, as the cells are continually passaged, neurons gradually die off, leading to the proliferation of astrocytes. By the end of this differentiation protocol, approximately 70% of the cells exhibit markers characteristic of mature astrocytes, specifically GFAP.

Novel Methods for Generating Retinal Pigment Epithelium Cells from Induced Pluripotent Stem Cells

The retinal pigment epithelial cells (RPE) make up a polarized monolayer in the vertebrate eye that separates the neural retina from the choroid, and performs a crucial role in retinal physiology by forming a blood-retinal barrier and closely interacting with photoreceptors to maintain visual function.  Many ophthalmic diseases, such as age-related macular degeneration, are associated with a degeneration or deterioration of the RPE. 

Establishment of Induced Pluripotent Stem Cells (iPSC) from the Thirteen-lined Ground Squirrel

The limited choice in cell types available for in vitro studies has become an obstacle in hibernation research. 

Researchers at the National Eye Institute for the first time have successfully established iPSC line(s) from a mammalian hibernator, which can be potentially used to generate various cell types and tissue models for in-depth mechanistic studies of hibernation and coldness tolerance in vitro. 

Novel Dopamine D2 Receptor Antagonists and Methods of Their Use

Investigators at the NIH have identified a series of novel, small molecule antagonists of the dopamine D2 receptor. Among the dopamine receptor (DAR) subtypes, D2 DAR is arguably one of the most validated drug targets in neurology and psychiatry. For instance, all receptor-based anti-Parkinsonian drugs work via stimulating the D2 DAR, whereas all FDA approved antipsychotic agents are antagonists of this receptor. Unfortunately, most agents that act as antagonists of D2 DAR are problematic, either they are less efficacious than desired or cause multiple adverse effects.

Zinbryta® for Treatment of Relapsing Multiple Sclerosis

The 2017 Deals of Distinction™ Award was presented to National Institutes of Health, (NIH) along with its corporate partners, AbbVie and Biogen, for a license agreement related to the development and launch of Zinbryta® for treatment of relapsing multiple sclerosis (MS)   The award, one of the most prestigious for technology transfer, was given to NIH and its partners at the Licensing Executives Society Annual Meeting in Chicago, Illinois.