Engineering Neural Stem Cells Using Homologous Recombination
Multidimensional MRI Signature for Specific Detection of Traumatic Brain Injury In Vivo
Traumatic brain injury (TBI) represents a major medical, social and economic concern worldwide due to significant mortality – especially among younger populations – and long-term disabilities. Various pathological brain lesions (e.g., intracerebral bleedings, necrotic-ischemic lesions, tissue avulsion) are produced by impacting mechanical forces. Among these, diffuse axonal injury (DAI) is one of the most significant brain lesions typically associated with trauma. However, DAI is not necessarily linked with TBI exposure. Therefore, the term “traumatic axonal injury (TAI)” is commonly used.
Personalized Tumor Vaccine and Use Thereof for Cancer Immunotherapy
Immune checkpoint inhibitors (ICIs) vastly improved the outcome of various advanced cancers; however, many are less likely to respond to single-agent ICI. Tumors with low T-cell infiltration are "immunologically cold" and less likely to respond to single-agent ICI therapy. This diminished response is presumably due to the lack of neoantigens necessary to activate an adaptive immune response. On the other hand, an "immunologically hot" tumor with high T-cell infiltration has an active anti-tumor immune response following ICI treatment.
Novel Methods for Generating Retinal Pigment Epithelium Cells from Induced Pluripotent Stem Cells
The retinal pigment epithelial cells (RPE) make up a polarized monolayer in the vertebrate eye that separates the neural retina from the choroid, and performs a crucial role in retinal physiology by forming a blood-retinal barrier and closely interacting with photoreceptors to maintain visual function. Many ophthalmic diseases, such as age-related macular degeneration, are associated with a degeneration or deterioration of the RPE.
Denoising of Dynamic Magnetic Resonance Spectroscopic Imaging Using Low Rank Approximations in the Kinetic Domain
Accurate measurement of low metabolite concentrations produced by medically important enzymes is commonly obscured by noise during magnetic resonance imaging (MRI). Measuring the turnover rate of low-level metabolites can directly quantify the activity of enzymes of interest, including possible drug targets in cancer and other diseases. Noise can cause the in vivo signal to fall below the limit of detection. A variety of denoising methods have been proposed to enhance spectroscopic peaks, but still fall short for the detection of low-intensity signals.
Improved Methods For Cryopreservation Of Cells, Tissues, And Organs
Summary:
The National Eye Institute seeks research co-development partners and/or licensees for novel methods of cryopreserving cells, tissues, and organs via FOXO1 activation and other mechanisms.
Establishment of Induced Pluripotent Stem Cells (iPSC) from the Thirteen-lined Ground Squirrel
The limited choice in cell types available for in vitro studies has become an obstacle in hibernation research.
Researchers at the National Eye Institute for the first time have successfully established iPSC line(s) from a mammalian hibernator, which can be potentially used to generate various cell types and tissue models for in-depth mechanistic studies of hibernation and coldness tolerance in vitro.
Alpha-galactosidase-A Knockout Mouse Model for Studying Fabry Disease
This technology includes an alpha-galactosidase-A knockout mouse model that can be used to study Fabry disease, an X-linked lysosomal storage disorder. Alpha-galactosidase-A is a crucial enzyme responsible for the breakdown of glycolipids, particularly globotriaosylceramide (Gb3), within lysosomes. In Fabry disease, a rare and inherited lysosomal storage disorder, mutations in the GLA gene lead to deficient or non-functional alpha-galactosidase-A enzyme activity.
Angubindin-1 Peptide for Transient Blood-Brain Barrier Opening to Boost Chemotherapy in Malignant Glioma
This technology includes a first-in-class synthetic peptide, angubindin-1, designed to temporarily relax the blood-brain barrier (BBB)—the tightly sealed network of brain blood vessel cells that normally blocks most drugs—from the inside. By binding the tricellular tight-junction protein angulin-1/LSR, the peptide creates a reversible “molecular doorway” that lets cancer medicines such as liposomal doxorubicin (Doxil®) reach tumors in the central nervous system (CNS).