Denoising of Dynamic Magnetic Resonance Spectroscopic Imaging Using Low Rank Approximations in the Kinetic Domain

Accurate measurement of low metabolite concentrations produced by medically important enzymes is commonly obscured by noise during magnetic resonance imaging (MRI). Measuring the turnover rate of low-level metabolites can directly quantify the activity of enzymes of interest, including possible drug targets in cancer and other diseases. Noise can cause the in vivo signal to fall below the limit of detection. A variety of denoising methods have been proposed to enhance spectroscopic peaks, but still fall short for the detection of low-intensity signals.

Use of the TP5 Peptide for the Treatment of Cancer

GBM is the most aggressive form of brain cancer. The current standard of care against GBM is a combination of surgery, chemotherapy and radiotherapy. However, after standard treatment, the cancer usually recurs – emphasizing a need for new targets and better alternatives. A promising target is cyclin-dependent kinase 5 (CDK5), the hyperactivity of which has been shown to have a role in cancer progression. 

Multidimensional MRI Signature for Specific Detection of Traumatic Brain Injury In Vivo

Traumatic brain injury (TBI) represents a major medical, social and economic concern worldwide due to significant mortality – especially among younger populations – and long-term disabilities. Various pathological brain lesions (e.g., intracerebral bleedings, necrotic-ischemic lesions, tissue avulsion) are produced by impacting mechanical forces. Among these, diffuse axonal injury (DAI) is one of the most significant brain lesions typically associated with trauma. However, DAI is not necessarily linked with TBI exposure. Therefore, the term “traumatic axonal injury (TAI)” is commonly used.

Novel Methods for Generating Retinal Pigment Epithelium Cells from Induced Pluripotent Stem Cells

The retinal pigment epithelial cells (RPE) make up a polarized monolayer in the vertebrate eye that separates the neural retina from the choroid, and performs a crucial role in retinal physiology by forming a blood-retinal barrier and closely interacting with photoreceptors to maintain visual function.  Many ophthalmic diseases, such as age-related macular degeneration, are associated with a degeneration or deterioration of the RPE. 

Methods for the Selection of Subjects for Multiple Sclerosis Therapy

Multiple Sclerosis (MS) is a life-long chronic autoimmune disease diagnosed primarily in young adults who have a virtually normal life expectancy. Estimates place the annual costs of MS in the United States in excess of $2.5 billion. There are approximately 250,000 to 400,000 persons in the United States with MS, and approximately 2.5 million persons worldwide suffer from MS. A variety of therapies are used to treat MS, but there is no single therapy that can be used to treat all patients.

Myelin Basic Protein-specific T cell Clones TL3A6, TL5F6, and TL5G7

Autoreactive T cell clones such as TL3A6 and TL5F6 that recognize an autoantigen, which is potentially relevant for an autoimmune disease, for example, multiple sclerosis (MS), offer the potential to examine the disease pathogenesis and develop new treatments. Such treatments aim at disrupting or interfering with the specific interaction between autoreactive T cells, antigen presenting cells and antigenic peptide. Current treatments have immunomodulatory effects and side effects. These T cell lines will be useful for developing novel treatment approaches for multiple sclerosis.

Receptor-Mediated Uptake of an Extracellular Bcl-X<sub>L</sub> Fusion Protein Inhibits Apoptosis

The present invention relates to the field of apoptosis, in particular, it relates to apoptosis-modifying fusion proteins with at least two domains, one of which targets the fusion proteins to a target cell, and another of which modifies an apoptotic response of the target cell. For example, fusing various cell-binding domains to Bcl-XL and Bad allows targeting to specific subsets of cells in vivo, permitting treatment and/or prevention of cell-death related consequences of various diseases and injuries.

Molecular Cloning and Characterization of SNAPIN: A Synaptic Vesicle Protein Implicated in Neurotransmitter

Neurotransmitter release is dependent on a binding complex (designated as SNAR) of three proteins, synaptic-vesicle-associated protein synaptobrevin/VAMP, syntaxin and SNAP-25 (snaptosome-associated protein-25) with results in a calcium dependent fusion between synaptic vesicles and the presynaptic terminal. SNAPIN, a neuron specific protein found predominately on synaptic vesicles, binds to the SNAR complex, most likely to the SNAP-25.

Development of Gene Chip Technology for Vascular Risk Assessment

Prevention of cardiovascular disorders such as myocardial infarction and stroke is an area of major public health importance. Currently, several risk factors for future cardiovascular disorders have been described and are in wide clinical use in the detection of individuals at high risk. However a large number of cardiovascular disorders occur in individuals with apparently low to moderate risk profiles, thereby limiting the ability to identify such patients. Moreover, many of the risk factors require accurate gathering of clinical information.

A New Mouse Monoclonal Antibody Against Human Microphthalmia Transcription Factor (MITF)

Micropthalmia Transcription Factor (MITF) plays an important role in melanocyte development and melanoma growth. MITF is important for embryonic development, regulating the generation of pigment cells and formation of melanomas and other tumors. MITF is made in various isoforms that may play unique roles for different organs during different developmental periods. Additionally, tissue MITF levels can serve as a molecular marker for the diagnosis of metastatic melanoma and therapeutic response.