Denoising of Dynamic Magnetic Resonance Spectroscopic Imaging Using Low Rank Approximations in the Kinetic Domain

Accurate measurement of low metabolite concentrations produced by medically important enzymes is commonly obscured by noise during magnetic resonance imaging (MRI). Measuring the turnover rate of low-level metabolites can directly quantify the activity of enzymes of interest, including possible drug targets in cancer and other diseases. Noise can cause the in vivo signal to fall below the limit of detection. A variety of denoising methods have been proposed to enhance spectroscopic peaks, but still fall short for the detection of low-intensity signals.

Use of the TP5 Peptide for the Treatment of Cancer

GBM is the most aggressive form of brain cancer. The current standard of care against GBM is a combination of surgery, chemotherapy and radiotherapy. However, after standard treatment, the cancer usually recurs – emphasizing a need for new targets and better alternatives. A promising target is cyclin-dependent kinase 5 (CDK5), the hyperactivity of which has been shown to have a role in cancer progression. 

Method for the Treatment of Multiple Sclerosis

The invention relates to the discovery that humanized antibodies to the interleukin-2 receptor (IL-2R) such as (daclizumab) are effective in treating multiple sclerosis (MS). In particular, it has been discovered that patients who have failed to respond to therapy with interferon-beta show dramatic improvement when treated with daclizumab, with patients showing both a reduction in the total number of lesions and cessation of appearance of new lesions during the treatment period. Daclizumab is effective both in combination with interferon-beta and alone.

Stem Cell Culture, Monitoring and Storage System

Available for licensing is a closed chamber that provides an environment for long-term culture of stem cells, stems cells of central nervous system (CNS) origin, embryonic stem cells, and other cells. The chamber is designed with top and bottom mounted cover slips that permit the observation of cells in culture under an optical microscope. This chamber has the ability to control volume and pressure of liquids and gases by an inlet tube and outlet tubes at two different vertical positions.

Methods and Materials for Controlling Stem Cell and Cancer Cell Proliferation and Differentiation

This work describes a novel nucleolar mechanism that controls the cell-cycle progression in CNS stem cells and cancer cells. The inventors identified a novel peptide, nucleostemin, found in the nucleoli of CNS stem cells, embryonic stem cells, and several cancer cell lines and preferentially expressed by other stem cell-enriched populations. When stem cells differentiate, nucleostemin expression decreases rapidly prior to cell-cycle exit both in vitro and in vivo. Depletion or overexpression of nucleostemin reduces cell proliferation in CNS stem cells and transformed cells.

Methods and Devices for Intramuscular Stimulation in Dysphonia

The invention is presently being licensed to two entities for treating dysphagia. The method and device of the invention can also be used for treating dysphonia, and the Public Health Service seeks a licensee to commercially develop this invention for that purpose. Qualified applicants are preferably those having implantable stimulators capable of inducing intramuscular stimulation of the laryngeal musculature to improve voice in humans. This invention will assist those persons who have chronic long-standing dysphonia.

Retinoids Can Increase the Potency of Anti-Cancer Immunotoxins

A unique method of potentiating the effect of anti-cancer immunotoxins has been developed, thus offering to significantly improve the treatment of a number of cancers as well as autoimmune diseases. Prolonged treatment of human cancers with classical methods such as radiation and chemotherapy, or a combination of both, may cause greater damage than the underlying disease because healthy tissue is often damaged along with diseased tissue.

Cell Expansion System For Use In Neural Transplantation

Cell transplantation therapy typically involves transplanting primary cells or immortalized cells into patients. The promising but still inconsistent data stemming from those clinical trials using primary cells in Parkinson's disease are believed to be due to an insufficient number, function and uniformity of the transplanted cells. In an effort to overcome these problems an improved method for isolating, growing and differentiating precursor cells into dopaminergic neurons has been developed.