Recombinant Sulfated HIV Envelope Protein and Methods for Making Protein
Continuous Cell Lines Persistently Expressing High Levels of Native HIV-1 Envelope Trimers on their Surface Membrane
Improvement of Broadly HIV-Neutralizing Antibodies; Anti-HIV-1 Antibody VRC01.23 for Prevention or Treatment of HIV Infection
Replication-Competent Adenovirus Type 4 SARS-CoV-2 Vaccines and Their Use
Humanized Murine Monoclonal Antibodies That Neutralize Type-1 Interferon (IFN) Activity
Replication-Competent Adenovirus Type-4 HIV Env Vaccines and Their Use
Dual-Germline Antibody Engager Chimeric HIV–1 Immunogens
Despite four decades of intensive research, a safe and effective HIV-1 vaccine remains elusive due to the extreme difficulty in eliciting broadly neutralizing antibodies (bNAbs), which recognize and block HIV-1 from entering healthy cells. Only rare natural HIV-1 envelopes (Envs) promote the activation and expansion of naive B cells expressing unmutated germline antibodies of various bNAb lineages, but they typically do so for a single lineage for the same neutralization site.
Enhanced Stability and Efficacy of Pfs48/45 Domain III Protein Variants for Malaria Vaccine Development Using SPEEDesign Technology
The technology includes modifying the Plasmodium falciparum Pfs48/45 Domain III protein sequence to enhance its stability and efficacy to aid in malaria vaccine development. This approach successfully overcomes previous production challenges by increasing the thermostability of the antigen and eliminating the need for additional modifications that could impair vaccine effectiveness. Crucially, the technology maintains the essential neutralizing epitope of Pfs48/45, ensuring its effectiveness in preventing malaria transmission as a transmission-blocking vaccine.
Human Monoclonal Antibodies that Broadly Target Coronaviruses
An abstract for this invention was published in the Federal Register on June 10, 2022. The family of coronaviruses cause upper respiratory tract disease in humans and have caused three major disease outbreaks in recent history: the 2003 SARS outbreak, the 2012 MERS outbreak, and the current SARS-CoV-2 pandemic. There is an urgent need for strategies that broadly target coronaviruses, both to deal with new SARS-CoV-2 variants and future coronavirus outbreaks.