A Broadly Protective Human Antibody for GI Genogroup Noroviruses

Norovirus is a leading cause of vomiting, diarrhea, and foodborne illness worldwide, with 700 million cases and 200,000 deaths occurring each year. Despite decades of work in the field, there are no preventive or therapeutic strategies specifically approved for even the most prevalent forms of human norovirus (i.e., GI, GII genogroups), which are highly contagious and carry an increased risk of severe complications in children, older adults, and those with immunocompromising conditions. 

A Novel Strategy to Produce 6-cys Proteins Based on Pfs230D1 Domain Fusions

The Plasmodium parasite has a complex lifecycle during human infection and in the mosquito vector. Most advanced malaria vaccine candidates can confer only partial, short-term protection in malaria-endemic areas. A means of breaking the transmission of malaria to subsequent individuals could prevent a significant amount of human disease.

The primary embodiments of this technology are novel compositions of matter that produce enhanced transmission-blocking responses over current transmission blocking vaccines:

Broadly neutralizing influenza hemagglutinin stem-directed antibodies

In 2023, the World Health Organization (WHO) reported roughly 3 to 5 million cases of severe influenza worldwide, resulting in approximately 290,000 to 650,000 deaths. Given the high disease burden, the needs for both prophylactic and therapeutic influenza strategies remain significant. However, current treatments for influenza are susceptible to resistance and are useful for only a limited post-infection period.    

CC Chemokine Receptor 5 DNA, New Animal Models and Therapeutic Agents for HIV Infection

Chemokine receptors are expressed by many cells, including lymphoid cells, and function to mediate cell trafficking and localization. CC chemokine receptor 5 (CCR5) is a seven-transmembrane, G protein-coupled receptor (GPCR) which regulates trafficking and effector functions of memory/effector T-lymphocytes, macrophages, and immature dendritic cells. Chemokine binding to CCR5 leads to cellular activation through pertussis toxin-sensitive heterotrimeric G proteins as well as G protein-independent signalling pathways.

4G10, a Monoclonal Antibody Against the Chemokine Receptor CXCR4, Raised Against a Synthetic Peptide of 38 Residues in Length Derived from the N-terminal Sequence of CXCR4

This invention identifies a monoclonal antibody (4G10) against the chemokine receptor CXCR4 and is a mouse IgG1 antibody. CXCR4 has been identified as a co-receptor mediating entry of HIV-1 into T cells. Subsequently, CXCR4 has been implicated in normal physiological functions, including activation of B cells and B cell progenitors and guiding their migration into the bone marrow (via its ligand SDF-1). CXCR4 also functions in T cell progenitor migration and neural progenitor stem cell activation.

MVA Expressing Modified HIV envelope, gag, and pol Genes

This invention claims Modified Vaccinia Ankara (MVA), a replication-deficient strain of vaccinia virus, expressing Human Immunodeficiency Virus (HIV) env, gag, and pol genes, where the genes are isolated from Ugandan Clade D isolates, Kenyan Clade A isolates, and Tanzanian Clade C isolates. In a rhesus macaque SHIV model, DNA priming followed by a recombinant MVA (rMVA) booster controlled a highly pathogenic immunodeficiency challenge. Both the DNA and the rMVA components of the vaccine expressed multiple immunodeficiency virus proteins.

Anti-Vaccinia Monoclonal Antibody

The current technology describes a monoclonal antibody that reacts with a vaccinia virus protein abundantly expressed under an early viral promoter after infection of cells. The antibody is useful for quantitating vaccinia virus infected cells and for studying the function of the protein to which it binds, which is known to be a double stranded RNA binding protein involved in resistance of the virus to interferons. This antibody is available for licensing through a biological materials license agreement.

Recombinant MVA Viruses Expressing Clade A/G and Clade B Modified HIV Env, Gag and Pol Genes Useful for HIV Vaccine Development

The current technology relates to the construction, characterization and immunogenicity of modified vaccinia Ankara (MVA) recombinant viruses. The MVA double recombinant viruses express modified/truncated HIV-1 Env and mutated HIV Gag Pol under the control of vaccinia virus early/late promoters. This technology describes the MVA double recombinant viruses made by homologous recombination of single MVA recombinants, one expressing Env and one expressing Gag Pol. These single MVA recombinants are made using a transiently expressed GFP marker that is deleted in the final viruses.