Enzymatically-Active RNA-Dependent RNA Polymerase From a Human Norovirus (Calicivirus)

The noroviruses (formerly known as “Norwalk-like viruses”) are associated with gastroenteritis outbreaks, affecting large numbers of individuals each year. Emerging data are supporting their increasing recognition as important agents of diarrhea-related morbidity and mortality. The frequency with which noroviruses are associated with gastroenteritis as “food and water-borne pathogens” has led to the inclusion of caliciviruses as Category B Bioterrorism Agents/Diseases.

Construction of an Infectious Full-Length cDNA Clone of the Porcine Enteric Calicivirus RNA Genome

Porcine enteric calicivirus (PEC) is a member of the genus Sapovirus in the family Caliciviridae. This virus causes diarrheal illness in pigs, and is presently the only enteric calicivirus that can be grown in cell culture. In addition to its relevance to veterinary medicine as a diarrheal agent in pigs, PEC serves as an important model for the study of enteric caliciviruses that cause diarrhea and that cannot be grown in cell culture (including the noroviruses represented by Norwalk virus).

Multimeric Protein Toxins to Target Cells Having Multiple Identifying Characteristics

This technology relates to multimeric bacterial protein toxins which can be used to specifically target cells. Specifically, this is a modified recombinant anthrax toxin protective antigen (PrAg) that has been modified in several ways. First, the PrAg can be activated both by a metalloproteinase (MMP) and by urokinase plasminogen activator (uPA). Second, the native PrAg lethal factor (LF) binding site has been modified so that only a modified PrAg comprising two different monomers can bind anthrax LF.

Enhanced Single-Component AMA1-RON2 Vaccine Candidates: A Breakthrough in Malaria Immunization

This technology focuses on the creation of single-component AMA1-RON2 (Apical membrane antigen 1-rhoptry neck protein 2) vaccine candidates. These candidates are based on a novel composition of matter designed to elicit a more effective immune response against the malaria parasite Plasmodium falciparum. The standout aspect of this technology is the Structure-Based Design 1 (SBD1) immunogen, engineered through a structure-based design that significantly enhances its ability to produce potent, strain-transcending neutralizing antibodies.

Transgenic Mouse Models for Studying HLA-B57:01 and HLA-B15:02 Linked Immune Responses and Hypersensitivity Reactions

Transgenic mouse models expressing human HLA-B57:01 and HLA-B15:02 molecules have emerged as invaluable tools for unraveling the intricacies of immune responses and hypersensitivity reactions. The major histocompatibility complex (MHC) encoded proteins play a pivotal role in the immune system by presenting peptide fragments to T lymphocytes, and HLA-B57:01 has been associated with severe hypersensitivity reactions triggered by abacavir, a widely used anti-retroviral drug.

Replicative-Defective Mutant Human Cytomegalovirus: Potential Applications in Vaccinology and Cancer Immunotherapy

The potential applications of a replicative-defective mutant form of human cytomegalovirus (HCMV) are significant in the fields of vaccinology and cancer immunotherapy. This innovative approach involves engineering a mutant HCMV that can selectively target specific cells. Firstly, it holds promise as a vaccine candidate for protecting against HCMV infection, given the success of a similar strategy against herpes simplex virus in animal models.

Bispecific Antibody Targeting Anthrax Toxins and Capsule for Enhanced Biodefense

The technology focuses on the development of a tetravalent bispecific antibody effective against Bacillus anthracis, the bacterium responsible for anthrax. This antibody combines the specificities of two monoclonal antibodies (mAbs): one targeting anthrax protective antigen (PA) and the other targeting the bacterial capsule. The anti-PA mAb shows potent toxin-neutralizing activity, while the anti-capsule mAb efficiently kills anthrax bacteria.

Stable Cell Line Technology for Enhanced Production of Varicella-Zoster Virus Vaccines

This technology includes a stable cell line engineered to have reduced expression of the pro-apoptotic protein Bim when exposed to doxycycline. This reduction in Bim expression allows for significantly higher yields of the Varicella-Zoster Virus (VZV), which is used in the production of live, attenuated VZV vaccines. The enhanced viral production makes this cell line particularly useful for vaccine manufacturing.

Next-Generation MSP1-Targeted Malaria Immunotherapy: Enhanced Vaccine Candidates and Monoclonal Antibodies

This technology encompasses the development of highly advanced malaria vaccine candidates and human monoclonal antibodies, both centered on targeting the Merozoite Surface Protein 1 (MSP1) of the Plasmodium falciparum malaria parasite. The innovation lies in utilizing a novel computational design and in vitro screening process, which has created MSP1 vaccine candidates that are significantly more immunogenic, stable, and cost-effective than existing alternatives. These vaccines focus on the 19 kDa carboxy-terminus fragment of MSP1.