Recombinant RSV B1 expressing eGFP as a reporter gene

The inventors have created a reverse genetics system for RSV strain B1 of antigenic subgroup B encoding a replication-competent recombinant RSV that contains a codon-optimized G ORF and expresses enhanced green fluorescence protein (GFP). There are two antigenic subgroups of RSV, subgroups A and B, and most of the available information and reagents are for subgroup A. Immunity against either subgroup has reduced effectiveness in restricting the heterologous subgroup, suggesting that an effective RSV vaccine might need to contain both subgroups.

Substitutions-Modified Prefusion RSV F Proteins and Their Use

The respiratory syncytial virus (RSV) fusion (F) glycoprotein is the primary target of neutralizing antibodies. The F glycoprotein exists in at least two conformations, a meta-stable prefusion state, and an extremely stable postfusion state. Both states share several epitopes targeted by neutralizing antibodies, but it has been demonstrated that the prefusion conformation of F contains at least one epitope not present in the postfusion conformation.

Recombinant HIV-1 Envelope Protein for Vaccine Use

In pursuit of an effective vaccine to end the global HIV-1/AIDS pandemic, researchers at the Vaccine Research Center (“VRC”) continue to study the structure of HIV-1. Recently, these researchers have determined the three-dimensional structure of the HIV-1 Envelope trimeric ectodomain (“Env”), comprised of three gp120 and three gp41 subunits, in its prefusion, mature, closed conformation.

Hybridoma cell lines producing antibodies to RSV NS1

This technology provides a new set of hybridoma cell lines each expressing a single monoclonal antibody against human respiratory syncytial virus (RSV) nonstructural protein 1 (NS1). These antibodies have variously been shown to detect NS1 protein in an enzyme-linked immunosorbent assay (ELISA), Western blot assay, immunofluorescence microscopy of paraformaldehyde-fixed cells, and flow cytometry. The various antibodies can vary in their efficiency in each of these assays.

Fusion Glycoprotein Vaccine for Human Metapneumovirus

Human metapneumovirus (hMPV), a negative, single-stranded RNA virus, accounts for approximately 5-15% of infant respiratory tract infections and poses a severe risk of disease and hospitalization in both the elderly and the immunocompromised. Investigators at the Vaccine Research Center (VRC) of the National Institute of Allergy and Infectious Diseases (NIAID) have generated an hMPV fusion glycoprotein (“F protein”) stabilized in a prefusion conformation.

Methods for Diagnosing and Treating Mycobacterium tuberculosis (Mtb) Infection through Detection of CD153 Expression Level.

Mycobacterium tuberculosis (Mtb) infection continues to be the leading cause of death due to a single infectious agent and poses significant global health challenges. Past research has shown that CD4 T cells are essential for resistance to Mtb infection, and for decades it has been thought that IFN(?) production is the primary mechanism of CD4 T cell-mediated protection.

Antibodies and Methods for the Diagnosis and Treatment of Epstein-Barr Virus Infection

According to the World Health Organization, over 90% of the worldwide population is infected with Epstein-Barr virus by adulthood. In most cases, the disease accompanying initial infection is subclinical though some individuals who are infected as adolescents or adults do experience infectious mononucleosis. However, once infected, individuals carry latent EBV for their remaining lifespan. In such individuals, immune suppression can result in reactivation of the EBV and consequently, EBV-associated lymphoproliferative disease.

Middle East Respiratory Syndrome Coronavirus Antibodies

Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes a highly lethal pulmonary infection with ~35% mortality. Currently there are no prophylactic measures or effective therapies. Inventors at the Vaccine Research Center of the National Institute of Allergy and Infectious Diseases have identified and developed neutralizing monoclonal antibodies (nMAbs) against the MERS-CoV. This invention describes antibodies that target the Spike (S) glycoprotein on the coronavirus surface, which mediates viral entry into host cells.