Substituted Quinoline Analogs as Aldehyde Dehydrogenase 1A1 (ALDH1A1) Inhibitors

Aldehyde dehydrogenase enzymes (ALDHs) have a broad spectrum of biological activities through the oxidation of both endogenous and exogenous aldehydes. Unbalanced expression levels of ALDHs have been associated with a variety of disease states such as alcoholic liver disease, Parkinson’s disease, obesity, and multiple types of cancers. ALDH1A1 also plays a major role in preserving the tumor microenvironment via differentiation, self-protection, and proliferation of cancer stem cells.

Compounds and Methods for Blocking Transmission of Malarial Parasites

Malaria continues to be a life-threatening disease, causing roughly 241 million cases and an estimated 627,000 deaths in 2020, mostly among African children, although in 2020 nearly half of the world’s population was at risk of malaria. There is a big financial burden for antimalarial treatment; direct costs (for example, illness, treatment, premature death) have been estimated to be at least US $12 billion per year and the cost in lost economic growth is many times more than that.

Prefusion Coronavirus Spike Proteins and Their Use

When a coronavirus was identified as the causative agent of the COVID-19 pandemic, researchers at the Vaccine Research Center of the National Institute of Allergy and Infectious Diseases (NIAID), together with their collaborators at the University of Texas at Austin and Dartmouth College, responded quickly to engineer the SARS-CoV-2 spike (S) protein for use in vaccines against SARS-CoV-2.

Method Of Identifying Inhibitors Of The Jak-STAT Signal Transduction Pathway

The invention provides identification methods for agents which inhibit the Jak-STAT signaling transduction pathway. Drugs identified by these methods are candidates for the treatment of proliferative disorders dependent on the Jak-STAT pathway, including those caused by HTLV-1. In addition, such agents may be potent immunosuppressive drugs with potential applications not only for organ transplantation but also for treatment of autoimmune diseases.

Adaptive Sensitivity Encoding Incorporating Temporal Filtering (TSENSE)

The invention is an accelerated magnetic resonance imaging method developed to reduce the total imaging time for gated, segmented cine imaging or to increase the frame rate when imaging dynamic activity, such as heart motion or brain activity. The invention combines temporal filtering (e.g., the UNFOLD method) with a known spatial sensitivity encoding technique (SENSE or SMASH) to achieve a new technique that is the subject of the invention (TSENSE) having a higher degree of alias artifact rejection than could be obtained using either temporal or spatial filtering individually.

Hybrid Adeno-Retroviral Vector for the Transformation of Cells (E-312-2000)

The invention described and claimed in these patent applications provides for novel hybrid vectors which may be used for cell transformation either in vivo, in vitro, or ex vivo. The hybrid vectors, which are capable of integrating into the chromosome of the host cell and are capable of transducing dividing and non-dividing cells, have an adenoviral serotype 5 backbone and two retroviral (Moloney murine leukemia virus) elements upstream and downstream of the transgene.

Attenuated Host-Range Restricted Dengue Viruses Derived by Site-Directed Mutagenesis of the Conserved 3-Stem and Loop Structure in Genomic RNA for Use as Vaccines

Although flaviviruses cause a great deal of human suffering and economic loss, there is a shortage of effective vaccines. The present invention is directed toward vector stage replication-defective flaviviruses that are replication-defective in mosquito vectors that transmit them to humans. The replication-defective flaviviruses of the present invention demonstrate a limited ability to replicate in the vector organisms that transmit flaviviruses from one host to another.