Prefusion-Stabilized Fusion (F) Glycoprotein Vaccine Immunogens For Human Metapneumovirus

Human metapneumovirus (hMPV) infections have been shown as a common cause of upper and lower respiratory diseases such as bronchiolitis and pneumonia in young children, the elderly, and other immunocompromised individuals. Studies show that infections by the non-segmented negative strand RNA virus begin with attachment and entry of viral glycoproteins that mediate fusion with host cellular membranes. Like for the human respiratory syncytial virus (hRSV), a viral entry is initiated by the fusion (F) protein.

A VSV-EBOV-Based Vaccine Against COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of for coronavirus disease 2019 (COVID-19). COVID-19 is characterized by fever, cough, difficulty breathing, loss of taste and smell, nausea, and sore throat. As of the fourth quarter 2020, COVID-19 is responsible for over 1.17 million deaths worldwide. As the pandemic continues to surge, the importance of a safe, affordable, and efficacious vaccine is of urgent importance.

Newcastle Disease Virus-Like Particle Displaying Prefusion Stabilized SARS-CoV-2 Spike and Its Use

SARS-CoV-2 has resulted in a global pandemic, sparking urgent vaccine development efforts. The trimeric SARS-CoV-2 spike stabilized in its prefusion conformation by the addition of 2 proline mutations (“SARS-CoV-2 S2P”) is the antigenic basis of SARS-CoV-2 vaccines that are currently authorized for use in the United States.

Hybridomas to Human Immunoglobulins for SARS-CoV-2 Diagnostics and Additional Indications

Immunoglobulins play a key role in the immune system. CDC has developed and tested hybridoma cell lines (monoclonal antibody (mAb) clones) for human IgG and other immunoglobulins. The mAbs generated from those hybridomas could be used as a reagent (second Ab) of anti-human immunoglobins in a diagnostic assay for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus that causes COVID-19 (coronavirus disease 2019) and other assays that detect antigen specific antibodies from human sera.

Diagnostic Assay to Detect Group C Rotavirus in Humans and Animals—Monoclonal Antibody-based ELISA (Enzyme-linked Immunosorbent Assay)

Rotaviruses cause severe gastroenteritis in humans and animals globally. Currently, there are eight known serogroups (A-H) of rotaviruses. Group C rotavirus (GpC RV) causes sporadic cases and outbreaks of acute diarrhea in children and adults worldwide. GpC RV is also associated with diarrhea in swine. Currently, no simple and reliable diagnostic test exists for GpC RV, so disease prevalence remains unknown.

Genetic Polymorphisms Of Interleukin-1 Alpha And Beta Associated With Early Onset Periodontitis

Periodontal disease occurs in 10-20% of adults, and constitutes a major cause of tooth loss. About 0.5% of U.S. adolescents between the ages of 14 to 17 years old (about 70,000) have localized early onset periodontitis and 0.1% (17,000) have the more destructive form known as generalized early onset periodontitis. Both types of early onset periodontitis often lead to tooth loss before the age of 20. Extrapolation of these figures up to age 35 leads to estimates of early onset periodontitis having a major impact on the dental health of 400,000 individuals in the U.S. population.

Tumor Associated Calcium Signal Transducer 2 (TACSTD2)-Overexpressing Huh7.5 Cells That Are More Permissive to HCV Cell Entry and Replication Compared to the Model Huh7.5 Cell Line

Worldwide, 130-150 million individuals are chronically infected with hepatitis C virus (HCV), a major cause of liver-associated morbidity and mortality worldwide. Despite recent advances in antiviral drugs that can cure some individuals, a rapid decline of the global disease burden is hampered by remarkably high treatment costs and a high number of undiagnosed infections. Moreover, a significant number of patients develop resistance and additional treatment modalities may be needed to dramatically reduce the worldwide incidence of HCV infection.

Identification and Use of Niclosamide Analogs as Inhibitors of SARS-CoV-2 Infection

This technology includes the identification and use of niclosamide analogs and prodrugs for the treatment of SARS-CoV-2 infection. In-vitro studies have found niclosamide, an old anthelminthic drug, to be potent and effective against Covid-19. But the broad antiviral effect of niclosamide is offset by the low solubility of the drug, leading to poor oral absorption. The niclosamide analogs and prodrugs included in this technology have better in vitro physicochemical properties. Also, these analogs were comparable to niclosamide in the in-vitro 3D models of SARS-CoV-2 infection.

Cloned Genomes Of Infectious Hepatitis C Virus And Uses Thereof

The current invention provides nucleic acid sequences comprising the genomes of infectious hepatitis C viruses (HCV) of genotype 1a and 1b. It covers the use of these sequences, and polypeptides encoded by all or part of the sequences, in the development of vaccines and diagnostic assays for HCV and the development of screening assays for the identification of antiviral agents for HCV.

Methods and Systems for Evaporation of Solvents and Solid Phase Extraction

There is an acute deficit in chemical synthesis with respect to benchtop tools that are specifically designed to address the capability and efficiency of certain key aspects of chemical synthesis, namely reaction preparation, product isolation, and solvent removal. Chemical research currently relies upon a variety of devices that function in a manner that is disconnected, as well as difficult to integrate and automate; collectively, these device challenges hinder the efficient isolation and purification of desired chemical synthesis products.