Fibroblast Growth Factor Receptor 4 (FGFR4) Monoclonal Antibodies and Methods of Their Use

Several Fibroblast Growth Factor Receptor 4 (FGFR4) specific antibodies with binding affinity at the nanomolar range have been successfully developed at the Genetics Branch. These antibodies have been made into different formats of therapeutic including Antibody Drug Conjugate (ADC), Bispecific T cell engager (BiTE) ae well as Chimeric Antigen Receptor (CAR)-T cells.

Proof of principle experiments have shown that when treated with FGFR4 positive tumor cells:  

A Specialized Tissue Collection Device for the Preservation and Transportation of Needle Biopsies

The ability to hold and transport tissue, especially needle biopsies in a pre-defined and controlled environment is critical for the preservation of biopsy samples in downstream analytic applications. Currently, tissue specimens are placed in open containers with variable, poorly controlled solutions applied to them, often in less than sterile conditions.  Evaluation of the tissue by examination through a stereoscope or similar approaches to determine adequacy is limited and requires manipulation of the tissue that can further damage the tissue.

Device for Simulating Explosive Blast and Imaging Biological Specimens

Traumatic brain injury (TBI) is a major health problem.  Between 3.2 and 5.3 million people live with long-term disabilities resulting from TBI, and thus, contribute to the need to develop therapies that treat TBI-induced cellular damage. Researchers at the National Institute of Child Health and Human Development (NICHD) have developed a device that simulates the pressure waves resulting from explosions.

Single domain CD4, HIV-1 Antibodies, and Fusion Proteins for treatment of HIV

Soluble forms of human CD4 (sCD4) inhibit HIV-1 entry into immune cells.  Different forms of sCD4 and their fusion proteins have been extensively studied in animal models and clinical trials as promising HIV-1 inhibitors. However, they have not been successful in clinical trials due to their transient efficacy.  sCD4 is also known to interact with class II major histocompatibility complex (MHCII) and, at low concentrations, could enhance HIV-1 infectivity. 

T Cell Receptors Targeting p53 Mutations for Cancer Immunotherapy and Adoptive Cell Therapy

The tumor protein p53 is a cell cycle regulator. It responds to DNA damage by triggering the DNA repair pathway and allowing cell division to occur or inducing cell growth arrest, cellular senescence, and/or apoptosis. p53 therefore acts as a tumor suppressor by preventing uncontrolled cell division. However, mutations in p53 that impair its cell cycle regulatory functions can induce uncontrolled cell division leading to cancer.

Isotropic Generalized Diffusion Tensor MRI

Scientists at the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD) have developed a method implemented as pulse sequences and software to be used with magnetic resonance imaging (MRI) scanners and systems. This technology is available for licensing and commercial development. The method allows for measuring and mapping features of the bulk or average apparent diffusion coefficient (ADC) of water in tissue – aiding in stroke diagnosis and cancer therapy assessment.

AngleNav: Micro-Electro-Mechanical Systems (MEMs) Trackers to Facilitate Computed Topography (CT)-Guided Needle Puncture

Conventional free-hand needle puncture procedures for biopsy and other procedures, often rely on unguided manual movements to guide a needle to its destination. Freehand procedures risk missing the tumor, or accidental injury, such as puncturing a vital organ. Needle guidance systems may improve accuracy and reduce risks but available guidance technologies are cumbersome and expensive and may carry other risks.

Synthesis and Characterization of Bismuth Beads for Trans Arterial Chemo Embolization Under Computed Tomography (CT) Guidance

Existing microsphere technologies are used as therapy for certain cancers. The therapy is by way of occlusion, when the microspheres are delivered into blood vessels that feed a tumor. The physical dimensions of the microspheres occlude the blood supply and thus, killing the tumor. Some microspheres have also been modified to bind protein, elute drugs, and reduce inflammatory reactions as part of the therapy. However, one technical short-coming of existing microsphere technology is a limited capability to be visualized in real-time.

Eye Tracking Application in Computer Aided Diagnosis and Image Processing in Radiology

Medical imaging is an important resource for early diagnostic, detection, and effective treatment of cancers. However, the screening and review processes for radiologists have been shown to overlook a certain percentage of potentially cancerous image features. Such review errors may result in misdiagnosis and failure to identify tumors. These errors result from human fallibility, fatigue, and from the complexity of visual search required.