Cannula for Pressure Mediated Drug Delivery

Available for licensing are methods and devices for selectively delivering therapeutic substances to specific histological or microanatomical areas of organs (e.g., introduction of the therapeutic substance into a hollow organ space such as the hepatobiliary duct or the gallbladder lumen) at a controlled pressure, volume and/or rate which allows the substance to reach a predetermined cellular layer.

Haplotypes of Human Bitter Taste Receptor Genes

Bitter taste has evolved in mammals as a crucial, important warning signal against ingestion of poisonous or toxic compounds. However, many beneficial compounds are also bitter, and taste masking of bitter tasting pharmaceutical compounds is a billion dollar industry. The diversity of compounds that elicit bitter-taste sensations is very large and more than two dozen members of the T2R bitter taste receptor family have been identified. Individuals are now known to be genetically predisposed to respond or not to respond to the bitter taste of a number of substances.

Novel Method of Fat Suppression in Steady State Free Precession (SSFP) Based Magnetic Resonance Imaging (MRI)

Available for licensing is a technique for improving magnetic resonance imaging (MRI) that employs steady state free precession (SSFP). One such technique, fast imaging with steady-state free precession (FISP), is a well established and is a fast MR imaging method commonly used to evaluate cardiovascular anatomy and function. FISP provides high signal to noise ratio (SNR) images with excellent contrast between blood and the myocardium. However, these images are often contaminated with high signal from fatty tissue resulting in image artifacts.

Laminin A Peptides

This invention relates to peptides and derivatives thereof having laminin-like activity, as well as a pharmaceutical composition of the peptide. The peptides claimed include Serine-Isoleucine-Lysine-Valine-Alanine-Valine (SIKVAV). Methods for promoting increased adhesion and migration of epithelial cells is also disclosed. The peptides have wide usage in research, nerve regeneration and cancer treatment. For example, this invention may be useful as an adhesion and regeneration agent for nerve guides and as an adhesion agent for vascular prosthesis.

Soluble Antigen-Based ELISA for the Detection of B. malayi Infections

The technology presented is a breakthrough in the diagnosis of lymphatic filariasis, specifically targeting the B. malayi pathogen. It encompasses a novel soluble antigen extract used in both IgG and IgG4-based ELISA tests, aimed at detecting the presence of the filarial infection. This innovation serves as a cornerstone for a CLIA-certified reference test, established and utilized in Dr. Nutman's laboratory since the late 1980s.

Development of a High-Throughput Screening Tool for RSV Inhibition Using Engineered RSV Expressing GFP and Luciferase Genes

The technology involves the genetic engineering of Respiratory Syncytial Virus (RSV) to express two additional genes, green fluorescent protein (GFP) and Renilla luciferase, from different positions within the viral genome. GFP serves as a visual marker for RSV infection, allowing researchers to monitor and track infected cells using fluorescence microscopy, while luciferase functions as a highly sensitive reporter gene that enables quantitative assessment of viral replication through enzymatic assays.

Enhanced GFP-Expressing Human Metapneumovirus (HMPV): A Versatile Tool for Virology Research and Antiviral Drug Screening

The technology involves genetically engineering Human Metapneumovirus (HMPV) to express enhanced green fluorescent protein (GFP), enabling the monitoring of virus infection and gene expression through GFP fluorescence. This system serves as a sensitive and versatile tool for virology research, antiviral drug screening, and diagnostic applications.

Optimizing RSV Infection Monitoring and High-Throughput Screening Through GFP Expression in the First-Gene Position of Respiratory Syncytial Virus (RSV) Strain A2

In this technology, researchers have engineered a modified version of Respiratory Syncytial Virus (RSV) strain A2 using reverse genetics to incorporate green fluorescent protein (GFP) into the first-gene position. This genetic modification allows for the efficient monitoring of RSV infection and the screening of potential chemical inhibitors. The GFP expression can be easily detected through fluorescence microscopy in live or fixed cells, providing a sensitive tool for both research and drug discovery.

Advancing VZV Antibody Detection: A High-Throughput LIPS Assay for Varicella Vaccine Recipients

The technology described is a sophisticated and high-throughput luciferase immunoprecipitation system (LIPS) assay designed to detect antibodies specific to Varicella-zoster virus (VZV) glycoprotein E (gE). By transfecting cells with VZV protein-Renilla luciferase fusion protein constructs and subsequently performing immunoprecipitations with protein A/G beads, this innovative assay enables the quantitative measurement of VZV gE antibody levels in blood serum samples.