Enhancing Activity of Bispecific Antibodies in Combination with Ibrutinib for the Treatment of Cancer

This technology includes the combination of a kinase inhibitor (specifically ibrutinib) with a bispecific antibody (specifically a CD19/CD3 bispecific antibody) to be used to treat cancer. CD19/CD3 bispecific antibodies (bsAbs) can be used to recruit endogenous T cells against CD19+ tumor cells via the formation of cytolytic synapses. lbrutinib, a BTK inhibitor, has been shown to normalize T cell dysfunction characteristic of CLL.

Electronic Fringe Scanning for the Improvement of Medical Imaging Technology

This technology includes an electronic method for fringe scanning in grating-based phase-contrast imaging, which enhances x-ray phase-contrast imaging. Traditional methods use high-density gratings and require fine grating fringes, finer than the detector's resolution, necessitating fringe scanning to obtain phase-contrast information. This process typically involves complex and precise movements of a grating for each image, challenging in applications like medical computed tomography that demand rapid gantry rotation and acquisition of numerous projection images in less than a second.

Immunogens, Compositions, and Methods for the Treatment of Dyslipidemia

This technology includes a novel vaccine for forming autoantibodies against apoC-III, a plasma enzyme that inhibits lipolysis. The vaccine can possibly be used to treat patients with high triglycerides and are at risk for pancreatitis and cardiovascular disease. This disclosure describes an ApoC3 immunogen that includes an antigenicApoC3 peptide linked to a bacteriophage virus-like-particle (VLP) immunogenic carrier.

Bivalent Tn5 Complex and its Application to Map Enhancer-Promoter Interactions for Use in Diagnostics

This technology includes a new reagent, termed bivalent Tn5 complex, and applied it to mapping genome-wide enhancer-promoter interactions to be utilized for disease diagnostics. Chromatin structure is critical for regulating transcription in normal development and disease states. In particular, the interaction between enhancers and promotes are essential for the temporospatial control of gene expression.

Transcatheter MRI-guided Implantable Cavopulmonary Bypass Endograft for the Treatment of Congenital Heart Disease

This technology includes a catheter-delivered endograft designed to treat congenital heart disease without surgery. The specific surgical procedure averted is cavopulmonary bypass graft. The key innovations are features to effect distal end-to-side anastomosis and proximal end-to-end anastomosis without surgery. The system operates under X-ray and MRI guidance.

Immunoassay-derived Protein Biomarkers of Atherosclerotic Cardiovascular Disease Risk

This technology includes a combination of 6 protein biomarkers and clinical risk factors to be used as an In Vitro Diagnostic Multivariate Index Assay (IVDMIA) that can improve the identification of individuals at high risk for atherosclerotic cardiovascular disease (ASCVD). Incorporation of novel protein biomarkers of ASCVD risk into risk assessment algorithms may improve their ability to identify individuals at high risk for ASCVD.

Mass Spectrometry Derived Protein Biomarkers of Atherosclerotic Cardiovascular Disease Risk

This technology includes a combination of protein biomarkers and clinical risk factors to be used as an In Vitro Diagnostic Multivariate Index Assay (IVDMIA) that can improve the identification of individuals at high risk for atherosclerotic cardiovascular disease (ASCVD) and myocardial infarction (MI). Incorporation of novel protein biomarkers of ASCVD risk into risk assessment algorithms may improve their ability to identify individuals at high risk for ASCVD.

Antibody Targeting of Cell Surface Deposited Complement Protein C3d as a Treatment for Cancer

This technology includes monoclonal antibodies (mAb) that specifically and with high affinity bind the final complement components C3dg and C3d (subsequently referred to as C3d), which can be used to kill tumor cells that carry C3d on their cell surface. We show that tumor cells of patients treated with the therapeutic anti-CD20 mAb ofatumumab carry C3d on the cell surface and can bind and be killed by addition of anti-C3 mAbs. In contrast, further addition of more ofatumumab has only minimal effects.

Cell Lines of Dopaminergic Neurons Derived from Human Induced Pluripotent Stem Cell (iPSC) lines for Multiple Neurological Therapeutic and Diagnostic Uses

This technology includes three cell lines of dopaminergic neurons derived from human induced pluripotent stem cell (iPSC) line BC1, human iPSG line X1 and human embryonic stem cell (hESC) line H14 to be utilized in neurology research. These cell lines will be used for to study the biology of brain development and may also be used to test different characterization and differentiation assays. The dopaminergic neurons and/or their derivatives may also be used as controls in studies to screen for small molecules to change cell fate and/or to alleviate the phenotypes of various diseases.

Neuronal Differentiation of Neural Stem Cells with StemPro Embryonic Stem Cell Serum Free Medium for Research and Therapeutic Development

This technology involves an innovative method for differentiating neural stem cells (NSCs) into neurons, primarily for use in basic science research and in developing therapies for brain and spinal cord disorders. Existing methods for generating neurons from NSCs typically result in high efficiency but low survival rates, especially when neurons are dissociated and regrown. This new method utilizes Life Technologies StemPro embryonic stem cell serum-free medium, which significantly enhances differentiation efficiency into neurons with minimal cell death.