Immunoassay-derived Protein Biomarkers of Atherosclerotic Cardiovascular Disease Risk

This technology includes a combination of 6 protein biomarkers and clinical risk factors to be used as an In Vitro Diagnostic Multivariate Index Assay (IVDMIA) that can improve the identification of individuals at high risk for atherosclerotic cardiovascular disease (ASCVD). Incorporation of novel protein biomarkers of ASCVD risk into risk assessment algorithms may improve their ability to identify individuals at high risk for ASCVD.

Mass Spectrometry Derived Protein Biomarkers of Atherosclerotic Cardiovascular Disease Risk

This technology includes a combination of protein biomarkers and clinical risk factors to be used as an In Vitro Diagnostic Multivariate Index Assay (IVDMIA) that can improve the identification of individuals at high risk for atherosclerotic cardiovascular disease (ASCVD) and myocardial infarction (MI). Incorporation of novel protein biomarkers of ASCVD risk into risk assessment algorithms may improve their ability to identify individuals at high risk for ASCVD.

Antibody Targeting of Cell Surface Deposited Complement Protein C3d as a Treatment for Cancer

This technology includes monoclonal antibodies (mAb) that specifically and with high affinity bind the final complement components C3dg and C3d (subsequently referred to as C3d), which can be used to kill tumor cells that carry C3d on their cell surface. We show that tumor cells of patients treated with the therapeutic anti-CD20 mAb ofatumumab carry C3d on the cell surface and can bind and be killed by addition of anti-C3 mAbs. In contrast, further addition of more ofatumumab has only minimal effects.

Cell Lines of Dopaminergic Neurons Derived from Human Induced Pluripotent Stem Cell (iPSC) lines for Multiple Neurological Therapeutic and Diagnostic Uses

This technology includes three cell lines of dopaminergic neurons derived from human induced pluripotent stem cell (iPSC) line BC1, human iPSG line X1 and human embryonic stem cell (hESC) line H14 to be utilized in neurology research. These cell lines will be used for to study the biology of brain development and may also be used to test different characterization and differentiation assays. The dopaminergic neurons and/or their derivatives may also be used as controls in studies to screen for small molecules to change cell fate and/or to alleviate the phenotypes of various diseases.

Neuronal Differentiation of Neural Stem Cells with StemPro Embryonic Stem Cell Serum Free Medium for Research and Therapeutic Development

This technology involves an innovative method for differentiating neural stem cells (NSCs) into neurons, primarily for use in basic science research and in developing therapies for brain and spinal cord disorders. Existing methods for generating neurons from NSCs typically result in high efficiency but low survival rates, especially when neurons are dissociated and regrown. This new method utilizes Life Technologies StemPro embryonic stem cell serum-free medium, which significantly enhances differentiation efficiency into neurons with minimal cell death.

Intranasal or Inhaled Delivery of a Custom IgA Antibody for Protection Against COVID-19

This technology includes an IgA antibody, specifically designed to target the receptor binding domain of SARS-CoV-2, the virus causing COVID-19. Administered intranasally, this antibody has potential neutralizing activity, aiming to prevent COVID-19. IgA, an antibody class present in mucosal areas, plays a crucial role in immune defense at the initial site of viral infection. The primary application of this technology is envisioned as a therapeutic nasal spray, intended to prevent SARS-CoV-2 infection, particularly in high-risk populations.

Computational Alleviation of Depth-dependent Degradation in Fluorescence Images

This technology includes an approach that dramatically lessens the effects of depth-dependent degradation in fluorescence microscopy images. First, we develop realistic ‘forward models’ of the depth dependent degradation and apply these forward models to shallow imaging planes that are expected to be relatively free of such degradation. In doing so, we create synthetic image planes that resemble the degradation found in deeper imaging planes. Second, we train neural networks to remove the effect of such degradation, using the shallow images as ground truth.

PET Imaging of lntegrin Expression with Suitably Labeled RGD Peptides for Multiple Diagnostic Purposes

This technology includes a number of dimeric RGD peptides which been developed and labeled with various PET isotopes (1BF, 68Ga, and 64Cu) for imaging integrin expression in cancer, inflammation, rheumatoid arthritis, myocardial infarct, stroke and traumatic injury. A number of these peptides have been translated into clinic for diagnosis and therapy response monitoring.

Real-time Monitoring of In Vivo Free Radical Scavengers Through Hyperpolarized [1-13C] N-acetyl Cysteine as a Diagnostic and Disease Monitoring Tool

This technology includes synthesized demonstrated [1-13C] NAC as a promising novel probe for hyperpolarized 13C MRI methodologies which could provide diagnostic, and evaluation of response to treatment in various cancers and neurological diseases. N-acetyl cysteine (NAC) is a widely used therapeutic and involved to stimulate glutathione synthesis. Glutathione elevates detoxification and works directly as a free radical scavenger. In vivo hyperpolarized NAC was broadly distributed throughout the body.

Genetic Manipulation of Natural Killer Cells to Express c-MPL Growth Factor Receptor as a Therapy for Cancer

This technology includes genetic manipulation of natural killer (NK) cells to express thrombopoietin receptor (c-MPL) growth factor receptor as strategy to augment NK cell proliferation and anti-tumor immunity. Many investigational adoptive immunotherapy regimens utilizing NK cells require the administration of IL-2 or IL-15 cytokines to support the survival and function of the cells in patients, however administration of these cytokines causes a number of serious dose-dependent toxicities.