Self-Expanding Stent for Valve Replacement

Aortic stenosis and aortic regurgitation are the most common types of aortic valvular diseases. Such diseased aortic valves in the body are traditionally replaced with valve prosthesis by an open surgical implantation. Available for licensing and commercial development is intellectual property covering stents for use with valve prostheses. As illustrated below, one possible embodiment of the invention includes a self-expandable stent with an elastic tubular latticework having radial and longitudinal direction.

qPCR Assay for Detection of JC Virus

JC Virus causes a fatal disease in the brain called progressive multifocal leukoencephalopathy (PML) that occurs in many patients with immunocompromised conditions. For example, more than five percent (5%) of AIDS patients develop PML. Additionally, these conditions include, but are not limited to, cancers such as leukemias and lymphomas, organ transplants such as kidney, heart and autoimmune conditions with treatment that modulates the immune system such as Multiple Sclerosis (MS), rheumatoid arthritis, psoriasis, and systemic lupus erythematosus.

Multilayered RF Coil System for Improving Transmit B1 Field Homogeneity in High-Field MRI

Available for licensing and commercial development is a multilayered radio-frequency (RF) coil system for improving the transmit B1 field homogeneity for magnetic resonance imaging (MRI) at high field strengths. The current invention aims at manipulating the inhomogeneous profile of the transmit B1 field, which causes MR images to become less uniform as the magnetic field strength is increased, by utilizing an inner array of RF elements (e.g. surface coils) within and coupled to an outer transmit unit (e.g. a birdcage coil or other volume coil).

RORgamma (RORC) Deficient Mice Which Are Useful for the Study of Lymph Node Organogenesis and Immune Responses

The retinoid-related orphan receptor gamma (RORgamma) is a member of the nuclear receptor superfamily. NIH investigators used homologous recombination in embryonic stem cells to generate mice in which the RORgamma gene was disrupted. RORgamma deficient mice lack peripheral and mesenteric lymph nodes and Peyer's patches indicating that ROR expression is indispensable for lymph node organogenesis. In addition, RORgamma is required for the generation of Th17 cells which play a critical role in autoimmune disease.

Vaccines Against Malarial Diseases

The invention offered for licensing is in the field of use of vaccines for malaria. The invention provides gene sequences encoding an erythrocyte binding protein of a malaria pathogen for the expression of the erythrocyte binding protein. The codon composition of the synthetic gene sequences approximates the mammalian codon composition. The synthetic gene sequences are useful for incorporation into DNA vaccine vectors, for the incorporation into various expression vectors for production of malaria proteins, or both.

Device and Method for Direct Measurement of Isotopes of Expired Gases: Application in Research of Metabolism and Metabolic Disorders, and in Medical Screening and Diagnostics

The technology offered for licensing and for further development concerns a novel device for intervallic collection of expired gas from subjects and subsequent measurement of the isotopic content of such expired gases. The device is specifically designed for medical research and clinical applications, and in particular in the area of metabolic disorders. The device may facilitate the development and testing of new therapies for such disorders and may be used for medical screening and diagnostics of metabolic diseases.

T-Cell-Specific Gfi-1 Knockout Mouse

This is a mouse model available to study T-cell differentiation. Growth factor independent 1 (GFi-1) is a transcriptional repressor that is transiently induced during T-cell activation. This knockout mouse line is a GFi-1[flox/flox] introduced into a mouse Cre controlled by a CD4 promoter, which allows selective removal of GFi-1 exclusively in T-cells. It has thus-far been used to demonstrate that GFi-1 plays a critical role in enhancing Th2 cell expansion and repressing induction of Th17 and CD103+ iTreg cells.

Conditional V2 Vasopressin Receptor Mutant Mice as a Model to Study X-linked Nephrogenic Diabetes Insipidus (XNDI)

X-linked nephrogenic diabetes insipidus (XNDI) is a severe kidney disease caused by inactivating mutations in the V2 vasopressin receptor (V2R) gene that result in the loss of renal urine-concentrating ability. At present, no specific pharmacological therapy has been developed for XNDI, primarily due to the lack of suitable animal models. This technology provides a unique and viable animal model of XNDI. NIH investigators have generated mice in which the V2R gene could be conditionally deleted during adulthood by administration of 4-OH-tamoxifen.

New Mouse Strain with Conditional Deletion of SMAD7: Analysis of Disease Processes Involving Immunological, Fibrotic or Cardiovascular Indications

SMAD7 conditional knockout mice are available for licensing. SMAD7 can be knocked out by breeding with CRE-recombinase transgenic mice with a variety of promoters to yield tissue or cell type-specific deletions of SMAD7. SMAD7 has been shown to play a role in bone morphogenesis, cardiovascular tissue generation, immune regulation and fibrosis. Therefore, these mice provide a unique model to examine the role of the SMAD7 gene in disease processes that involve immunological, fibrotic, or cardiovascular components.