Background-free Imaging by Selective Modulation of Nanodiamond Fluorescence Using a Magnetic Field

This technology includes the use of nanodiamonds to achieve background-free imaging. We present several techniques to reduce or eliminate background florescence by exploiting properties of the fluorescent nanodiamonds. In particular, magnetic field modulation of the fluorescence intensity offers a simple, robust, and easily adaptable method to obtain background free imaging in a variety of imaging modalities, i.e., fluorescence microscopy and wide field fluorescence animal imaging.

LZK and DLK Inhibitors to Target LZK and Suppress MYC Expression, Inhibit AKT Activation, and Promote Cancer Cell Death and Tumor Regression

This technology includes the use of LZK and DLK inhibitors to be used for the treatment of head and neck squamous cell carcinoma (HNSCC) or lung squamous cell carcinoma (LSCC). Specifically, we demonstrate that inhibitors that can be repurposed to target LZK suppresses LZK kinase-dependent stabilization of MYC and activation of the PI3K/AKT pathway. In vivo preclinical cell line xenograft mouse model demonstrates that targeting LZK will suppress tumor growth. We also demonstrate that several additional compounds potently inhibit LZK and could serve as new therapeutic modalities.

A Mouse Model of Multiple Endocrine Neoplasia, Type I

The current invention embodies a mouse model which is heterozygous for a null allele at the Men1 locus of murine chromosome 19. Men1 has similar exon-intron organization and amino acid identity compared with its human analog MEN1, which has been implicated in the pathogenesis of multiple endocrine neoplasia, type I (MENI). This mouse model has been shown to develop features remarkably similar to those of MEN1, which include tumors of the endocrine pancreas, pituitary, and parathyroids.

Clonal Spodoptera Frugiperda Cell lines for Enhanced Expression

This technology includes Spodoptera frugiperda (Sf9) cells which were developed to produce recombinant adeno-associated virus. The cells maintain a copy of the vector genome and for production, require infection with a single baculovirus that expresses either structural and nonstructural proteins to produce rAAV, or the non-structural (Rep) proteins to produce ceDNA.

Prazoles as Potential Broad Spectrum Anti-viral Agents

The technology described involves the use of a compound called prazole as an anti-viral agent specifically targeting HIV-1. It was found that prazole binds to a protein called Tsg101, which is crucial for the virus's life cycle. This binding disrupts the normal interaction of Tsg101 with another protein, ubiquitin, thereby inhibiting the release of HIV-1 particles from infected cells. Additionally, the interference caused by prazole leads to the degradation of the viral protein Gag within host cells.

Enhancing Activity of Bispecific Antibodies in Combination with Ibrutinib for the Treatment of Cancer

This technology includes the combination of a kinase inhibitor (specifically ibrutinib) with a bispecific antibody (specifically a CD19/CD3 bispecific antibody) to be used to treat cancer. CD19/CD3 bispecific antibodies (bsAbs) can be used to recruit endogenous T cells against CD19+ tumor cells via the formation of cytolytic synapses. lbrutinib, a BTK inhibitor, has been shown to normalize T cell dysfunction characteristic of CLL.

Electronic Fringe Scanning for the Improvement of Medical Imaging Technology

This technology includes an electronic method for fringe scanning in grating-based phase-contrast imaging, which enhances x-ray phase-contrast imaging. Traditional methods use high-density gratings and require fine grating fringes, finer than the detector's resolution, necessitating fringe scanning to obtain phase-contrast information. This process typically involves complex and precise movements of a grating for each image, challenging in applications like medical computed tomography that demand rapid gantry rotation and acquisition of numerous projection images in less than a second.

Immunogens, Compositions, and Methods for the Treatment of Dyslipidemia

This technology includes a novel vaccine for forming autoantibodies against apoC-III, a plasma enzyme that inhibits lipolysis. The vaccine can possibly be used to treat patients with high triglycerides and are at risk for pancreatitis and cardiovascular disease. This disclosure describes an ApoC3 immunogen that includes an antigenicApoC3 peptide linked to a bacteriophage virus-like-particle (VLP) immunogenic carrier.

An Automated System for Myocardial Perfusion Mapping and Machine Diagnosis to Detect Ischemic Heart Disease with First-pass Perfusion Cardiac Magnetic Resonance Imaging

This technology includes a fully automated computer aided diagnosis system to quantify myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) pixel maps from the first-pass contrast-enhanced cardiac magnetic resonance (CMR) perfusion images. This system performs automated image registration, motion compensation, segmentation, and modeling to extract quantitative features from different myocardial regions of interest.

Transgene Free Non-human Primate Induced Pluripotent Stem Cells (iPSCs) for Use in Pre-clinical Regenerative Medicine Research

This technology includes rhesus macaque induced pluripotent stem cells (iPSCs) lines from multiple animals and various types of cells to establish this pre-clinical model. iPSCs are a type of pluripotent stem cell that can be generated from adult somatic cells. The iPSC technology holds great potential for regenerative medicine. Before clinical application, it is critical to evaluate safety and efficacy in a clinically-relevant animal model. We propose that non-human primate models are particularly relevant to test iPSC-based cell therapies.