NAG-1: A Non-Steroidal Anti-Inflammatory Drug Related Gene Which Has Anti-Tumorigenic Properties

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of inflammatory disease, and their anti-inflammatory effects are believed to result from their ability to inhibit the formation of prostaglandins by prostaglandin H synthase (COX). Two forms of prostaglandin H have been identified, COX-1 and COX-2. The former seems to be constitutively expressed in a variety of tissues while the high expression of the latter has been reported in colorectal tumors. NSAIDs have been shown to be effective in reducing human colorectal cancers and possibly breast and lung cancers.

Active Guidewire Visualization Device and System for MRI Guided Interventions

Available for licensing and commercial development is a guidewire device and system for MRI guidance of vascular interventions. The guidewire design, and its coupled system, enables interventionalists to visualize the location of the tip and distal shaft of an MRI compatible guidewire relative to the vascular system and surrounding anatomy. Visualization of both the shaft and tip enables interventionalists to advance the guidewire through tortuous vessels reducing the risk of puncturing vessel walls and also steering it through labyrinthine vasculature.

Transgenic Mice with Conditionally-Enhanced Bone Morphogen Protein (BMP) Signaling: A Model for Human Bone Diseases

This technology relates to novel animal models of several human bone diseases that have been linked to enhanced BMP signaling. More specifically, this mouse model expresses a mutant receptor for BMP, known as Alk2 that is always actively signaling. This receptor is under the control of the Cre-loxP system, which allows control of expression of the mutant Alk2 in both a developmental and tissue-specific manner. As a result, the enhanced signaling conditions exhibited in multiple human bone-related diseases can be studied with the same animals.

Mouse Monoclonal Antibody to the Nitrone Spin Trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO)

Oxidative stress resulting in the formation of biological radicals has been implicated in a number of human diseases, such as cancer as well as aging. There is, however, a paucity of reliable methods for in vivo or ex vivo detection of radical formation. Until now the only general technique that allowed for the detection of these highly reactive species was electron spin resonance (ESR) using spin traps. One of the most popular of these spin traps is 5,5-dimethyl-1-pyrroline N-oxide (DMPO).

Mice with a Conditional LoxP-Flanked Glucosylceramide Synthase Allele Controlling Glycosphingolipid Synthesis

Glycosphingolipids are organizational building blocks of plasma membranes that participate in key cellular functions, such as signaling and cell-to-cell interactions. Glucosylceramide synthase - encoded by the Ugcg gene - controls the first committed step in the major pathway of glycosphingolipid synthesis. Global disruption of the Ugcg gene in mice is lethal during gastrulation. The inventors have established a Ugcg allele flanked by loxP sites (floxed).

Therapeutic Methods Based on In Vivo Modulation of the Production of Interferon gamma

The technology offered for licensing is in the field of Therapeutics. More specifically, the technology relates to biological ligands and their use as modulators of the production of Interferon gamma as a means to treat a broad spectrum of diseases. The invention describes and claims antibodies and other ligands that can stimulate Natural Killer (NK) immune cells to produce Interferon gamma which contributes to the combat against foreign pathogens.

MDCK Cells with Enhanced Characteristics for Vaccine and Virus Production

This technology relates to compositions and methods for improving the growth characteristics of cells engineered to produce live viruses such as the Influenza virus. Featured is a method that uses the gene candidate, siat7e, or its expressed or inhibited products in Madin Darby Canine Kidney (MDCK) cells. The gene expression modulates anchorage-dependence of the cell line thereby allowing scale-up on bioreactor platforms without the use of microcarrier beads and reducing production costs.

Cell Based Immunotherapy

The invention hereby offered for licensing is in the field of Immunotherapy and more specifically in therapy of autoimmune diseases such as Type I diabetes, multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosis and immune mediated allergies such as asthma as well as in transplantation-related disorders, such as graft acceptance and graft-versus-host-disease (GVHD).

Polyclonal Antibodies to the Kidney Protein Sodium-Hydrogen Exchanger 3 (NHE3)

Antibodies to NHE3, useful for immunoblotting and immunocytochemistry, are available to resell for research purposes. NHE3 is a membrane Na+/H+ exchanger involved in maintenance of fluid volume homeostasis in the kidney. It is expressed on the apical membrane of the renal proximal tubule and plays a major role in NaCl and HCO3 absorption. The inventor has developed rabbit polyclonal antibodies directed against a peptide sequence common to human, rat and mouse NHE3.

Polyclonal Antibodies to Thiazide-Sensitive Sodium-Chloride Cotransporter (NCC)

Antibodies to thiazide-sensitive sodium-chloride cotransporter (NCC), useful for immunoblotting and immunocytochemistry, are available to resell for research purposes. NCC is found on the apical membrane of the distal convoluted tubule, where it is the principal mediator of Na+ and CI- reabsorption in this segment of the nephron. NCC is the target of thiazide diuretics used in the treatment of hypertension. The inventors have developed rabbit polyclonal antibodies directed against a peptide sequence in the C-terminal region of NCC.