A Rabbit Anti-pT1989 ATR Monoclonal Antibody for Use in Immunoassays

Ataxia telangiectasia mutated and Rad3 Related (ATR) protein kinase is essential for regulating DNA damage checkpoints during the cell cycle. ATR, is phosphorylated at threonine 1989 site (T1989) in response to DNA damage and ATR activation leads to activation of downstream substrates, signaling cascades and cell cycle arrest. ATR is a potential target for anticancer therapeutics to induce cancer cell death by inhibiting cell cycle arrest pathways in response to chemotherapeutics.

Chimeric Antigen Receptors that Recognize Mesothelin for Cancer Immunotherapy

Chimeric antigen receptors (CARs) with high affinity for mesothelin that can be used as an immunotherapy to treat cancers that express mesothelin, such as pancreatic cancer, ovarian cancer, and mesothelioma. The technology includes CAR constructs with one of three different mesothelin-specific antibody portions, including either the mouse-derived SS or SS1 antibody fragments or the human HN1 antibody fragment.

Multi-epitope Vaccines against TARP (ME-TARP) for Treating Prostate and Breast Cancer

The development of more targeted means of treating cancer is vital. One option for a targeted treatment is the creation of a vaccine that induces an immune response only against cancer cells. In this sense, vaccination involves the introduction of a peptide into a patient that causes the formation of antibodies or T cells that recognize the peptide. If the peptide is from a protein found selectively on/in cancer cells, those antibodies or T cells can trigger the death of those cancer cells without harming non-cancer cells. This can result in fewer side effects for the patient.

A Rapid Method of Isolating Neoantigen-specific T Cell Receptor Sequences

Tumors can develop unique genetic mutations which are specific to an individual patient. Some of these mutations are immunogenic; giving rise to autologous T cells which are tumor-reactive. Once isolated and sequenced, these neoantigen-specific TCRs can form the basis of effective adoptive cell therapy cancer treatment regimens; however, current methods of isolation are inefficient. Moreover, the process is technically challenging due to TCR sequence diversity and the need to correctly pair the a and b chain of each receptor.

Gene-based Diagnostic Predicts Patient Response to Cancer Immunotherapy

Immunotherapy is a promising method of treating cancer that leverages the immune system to promote tumor rejection. However, certain somatic mutations in cancer cells confer resistance to T cell-mediated cytolysis. To improve the effectiveness of immunotherapies for cancer, there exists a need to prospectively identify patients who are most likely to respond to such therapies.

Photoactivatable Lipid-based Nanoparticles as a Vehicle for Dual Agent Delivery

The invention relates to novel lipid-based nanoparticles (liposomes) for use in targeted, on demand and on site drug delivery. The particles include a wall surrounding a cavity, wherein the wall is comprised of:

  1. A lipid bilayer comprising 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC), dipalmitoylphosphatidylcholine (DPPC), and 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000), and

Use of Heterodimeric IL-15 in Adoptive Cell Transfer

Adoptive cell transfer (ACT) is a promising immunotherapeutic approach for cancer treatment. During ACT, if a patient is subjected to lymphodepletion prior to cell transfer, there is an observed improvement in a patient’s response to treatment. However, lymphodepletion is associated with detrimental effects, including severe immune dysfunction that persists after treatment.

Tissue Clamp for Repeated Opening and Closure of Incisions/Wounds

Medical clamps currently available are not efficient nor are they sufficiently precise in closure and alignment of the edges of an incision or wound. Many available designs are difficult to use and handle, especially in situations where repeated opening and closure of an incision or wound is required. The functional short-comings of existing clamp designs may result in surgical complications, such as excess loss of fluids and pressure and hemostasis during some procedures.

Griffithsin-Based Anti-viral Therapeutics with Improved Stability and Solubility

Griffithsin is a potent anti-viral protein with activity against HIV, HCV, Sars, HSV 1 & 2 and other viruses.  It is active against HIV and HCV at picomolar concentrations.  Griffithsin is moving into clinical trials as an anti-HIV microbicide. Based on the structure of griffithsin and the necessities of pharmaceutical product development and regulatory approval, certain mutations in the sequence of griffithsin have been generated which could add to the stability and solubility of the protein.