Use of Acetalax for Treatment of Triple Negative Breast Cancer

Triple negative (progesterone receptor (PR)-, estrogen receptor (ER)-, human epidermal growth receptor 2 (HER2)-) breast cancer (TNBC) is an aggressive subtype that affects 15-20% of the 1.7 million cases of breast cancer occurring annually.  Currently, standard treatments of TNBC include cytotoxic chemotherapies, surgery, and radiation. However, TNBC readily becomes resistant to chemotherapy, and those with TNBC are more likely to have a recurrence or die within five years compared to those with other breast cancer types.

Iodonium Analogs as Inhibitors of NADPH Oxidases and other Flavin Dehydrogenases and their Use for Treating Cancer

Diverse human cancers like colorectal, pancreatic, ovarian, melanoma, and pre-cancers express NADPH oxidases (NOX) at high levels. Reactive oxygen species (ROS) produced from metabolic reactions catalyzed by NOX in tumors are essential to the tumor’s growth. Though drugs that inhibit ROS production by NOX could be effective against a variety of human cancers, these types of drugs are not widely available.

Murine metastatic pancreatic adenocarcinoma cell lines

Researchers at the National Cancer Institute (NCI) have developed orthotopic allograft models for pancreatic cancer that utilize low passage primary pancreatic adenocarcinoma cells or tumor fragments implanted into the cancer-free pancreata of recipient syngeneic immunocompetent mice. Tumor development in these models is more synchronized, latency is substantially shortened, and tumors develop only in one location, as pre-determined by the choice of a site for cells/tumor fragment implantation.

Alpha-galactosidase-A Knockout Mouse Model for Studying Fabry Disease

This technology includes an alpha-galactosidase-A knockout mouse model that can be used to study Fabry disease, an X-linked lysosomal storage disorder. Alpha-galactosidase-A is a crucial enzyme responsible for the breakdown of glycolipids, particularly globotriaosylceramide (Gb3), within lysosomes. In Fabry disease, a rare and inherited lysosomal storage disorder, mutations in the GLA gene lead to deficient or non-functional alpha-galactosidase-A enzyme activity.

General-purpose Deep Learning Image Denoising Based on Magnetic Resonance Imaging Physics

This technology includes a novel method to train deep learning convolution neural network model to improve the signal-noise-ratio for the magnetic resonance (MR) imaging. The novelty lies on the fact that actual MR imaging physics information is used in the deep learning training. The resulting model achieves significant signal-to-noise ratio (SNR) improved for different acceleration factors in MR imaging. The resulting model can be used for many body anatomies (e.g., brain, heart, liver, spine, etc.) to significantly improve the SNR.

Method for HLA LOH Detection in Liquid Biopsies

Human leukocyte antigen (HLA) LOH (LOH) is a known resistance mechanism by which cancers evade T cell receptor-(TCR-)based immunotherapies. This class of therapies includes immune checkpoint inhibition (ICI, e.g., Pembrolizumab), engineered TCR (T cell receptor)-T cell adoptive transfer, tumor infiltrating lymphocytes (TIL), T-cell engagers, and other modalities. Dozens of therapies in this category were developed with many in clinical trials. The resistance mechanism noted here, HLA LOH, causes these therapies to fail.

Fluorinated MU-Opioid Receptor Agonists

Summary: 
Investigators at the National Institute on Drug Abuse seek co-development partners and/or licensees for collection of mu opioid receptor (MOR) agonists as alternatives for existing compounds.

Description of Technology: 
Although existing opioids are excellent analgesics and useful as positron emission tomography (PET) radiotracers, they come with debilitating side effects. These include addiction, respiratory distress, hyperalgesia, and constipation. Therefore, there is a need for alternatives with lower adverse effects.

Selective A3 Adenosine Receptor Agonists for the Treatment of Chronic Neuropathic Pain and Other Conditions

This technology includes the creation and use of A3 adenosine receptor (A3AR)-selective agonists for treating chemotherapy-induced peripheral neuropathy, chronic neuropathic pain, rheumatoid arthritis, psoriasis, and other conditions. A3 receptors for adenosine are found in most cells and endogenous activation of the A3 receptors can result in apoptosis, thereby relieving the inflammation or targeting a tumor. A3AR agonists have been a promising strategy for the treatment of various diseases.