Anti-bacterial Treatments Using Peptide-Based Inhibitors of the STAT3-IL10 Pathway

Tuberculosis (TB) is an infectious disease that typically affects the lungs. Current therapies include a panel of antibiotics given over a range of 6-9 months. As a result of the expense of treatment, the extended timeframe needed for effective treatment, and the scarcity of medicines in some developing countries, patient compliance with TB treatment is very low and results in multi-drug resistant TB (MDR-TB). There remains a need for a faster, more effective treatment for TB.

Methods of making and using dopamine receptor selective antagonists/partial agonists

Dopamine is a major neurotransmitter in the central nervous system and among other functions is directly related to the rewarding effects of drugs of abuse.  Dopamine signaling is mediated by D1, D2, D3, D4 and D5 receptors.  The dopamine D3 receptor is a known target to treat a variety of neuropsychiatric disorders, including substance use disorders (e.g. cocaine and opioid), schizophrenia and depression.

Small Molecule Inhibitors of Drug Resistant Forms of HIV-1 Integrase

Integrase strand transfer inhibitors (“INSTIs”) are currently in use as a component of prophylactic antiretroviral therapy for preventing HIV-1 infection from progressing to AIDS. Three INSTIs are approved by the FDA for inclusion in antiretroviral regiments: raltegravir (RAL), elvitegravir (EVG) and dolutegravir (DTG). Clinicians have already identified several HIV-1 integrase mutations that confer resistance to RAL and EVG, and additional mutations that confer resistance to all three INSTIs has been identified in the laboratory.

Novel Fixative for Improved Biomolecule Quality from Paraffin-Embedded Tissue

Tissues samples collected during medical procedures, such as biopsies, are used to diagnose a wide variety of diseases. Before diagnosis, patient samples are typically processed by fixation and paraffin embedding. This fixation/embedding process is used to preserve tissue morphology and histology for subsequent evaluation. Unfortunately, most fixative agents can damage or destroy nucleic acids (RNA and DNA) and damage proteins during the fixation process, thereby potentially impairing diagnostic assessment of tissue.

B-cell Surface Reactive Antibodies for the Treatment of B-Cell Chronic Lymphocytic Leukemia

B-cell chronic lymphocytic leukemia (B-CLL) is a cancer characterized by a progressive accumulation of functionally incompetent lymphocytes.  Despite high morbidity and mortality, the only available potential cure is allogeneic hematopoietic stem cell transplantation (alloHSCST).  However, there is less than a 50% chance of finding a matching bone marrow or blood donor for B-CLL patients.  Other clinically tested targeted therapies such as rituximab and alemtuzumab target both malignant and normal B cells, resulting in immunosuppression.

Vaccines for HIV

The development of an effective HIV vaccine has been an ongoing area of research. The high variability in HIV-1 virus strains has represented a major challenge in successful development.  Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV.  Two major hurdles to overcome are immunodominance and sequence diversity.  This vaccine utilizes a strategy for overcoming these two issues by identifying the conserved regions of the virus and exploiting them for use in a targeted therapy. 

Biomarker signature development: microRNAs for biodosimetry

Alterations in microRNAs (miRNAs), a type of small non-coding RNAs, have been reported in cells/tumors subjected to radiation exposure, implying that miRNAs play an important role in cellular stress response to radiation. NCI researchers evaluated small non-coding RNAs, long non-coding RNAs (lncRNA), and mRNA, as potential non-invasive biomarkers for radiation biodosimetry. While the use of miRNAs as radiation biomarkers has been reported, the integrated use of miRNAs, mRNAs and lncRNAs to accurately determine radiation doses is novel and has not been published.

Metastatic ovarian cancer mouse models and cell lines for preclinical studies

The high mortality rate from ovarian cancers can be attributed to late-stage diagnosis and lack of effective treatment. Despite enormous effort to develop better targeted therapies, platinum-based chemotherapy still remains the standard of care for ovarian cancer patients, and resistance occurs at a high rate. One of the rate limiting factors for translation of new drug discoveries into clinical treatments has been the lack of suitable preclinical cancer models with high predictive value.