Vaccines for HIV

The development of an effective HIV vaccine has been an ongoing area of research. The high variability in HIV-1 virus strains has represented a major challenge in successful development.  Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV.  Two major hurdles to overcome are immunodominance and sequence diversity.  This vaccine utilizes a strategy for overcoming these two issues by identifying the conserved regions of the virus and exploiting them for use in a targeted therapy. 

Metastatic ovarian cancer mouse models and cell lines for preclinical studies

The high mortality rate from ovarian cancers can be attributed to late-stage diagnosis and lack of effective treatment. Despite enormous effort to develop better targeted therapies, platinum-based chemotherapy still remains the standard of care for ovarian cancer patients, and resistance occurs at a high rate. One of the rate limiting factors for translation of new drug discoveries into clinical treatments has been the lack of suitable preclinical cancer models with high predictive value.

Use of Cucurbitacins and Withanolides for the Treatment of Cancer

Certain members of the cucurbitacin and Withanolide family have been identified that can sensitize some tumor cell lines to cell death (apoptosis) on subsequent exposure of the cells to pro-apoptotic receptor agonists (PARAS) of the TRAIL "death receptors". These PARAS include TRAIL itself, and agonist antibodies to two of its receptors death receptor-4 (DR4 or TRAIL-R1) and death receptor 5 (DR5, TRAIL-R2). 

Ex-vivo Production of Regulatory B-Cells for Use in Auto-immune Diseases

Regulatory B-cells (Breg) play an important role in reducing autoimmunity and reduced levels of these cells are implicated in etiology of several auto-inflammatory diseases. Despite their impact in many diseases, their physiological inducers are unknown.  Given that Bregs are a very rare B-cell, identifying factors that promote their development would allow in vivo modulation of Breg levels and ex-vivo production of large amounts of antigen-specific Bregs to use in immunotherapy for auto-inflammatory diseases.
 

Therapeutic Management of Menkes Disease and Related Copper Transport Disorders

The only currently available treatment for Menkes disease, subcutaneous copper histidinate injections, is successful only in patients with ATP7A gene mutations that do not completely corrupt ATP7A copper transport function (estimated 20-25% of affected patients) and when started at a very early age (first month of life). The combination of viral gene therapy with copper injections provides working copies of the ATP7A copper transporter into the brain, together with a source of the substrate (copper)  needed for proper brain growth and clinical neurodevelopment.

Transgenic Mouse Model of Human Basal Triple Negative Breast Cancer

The NCI Laboratory of Cancer Biology and Genetics seeks parties interested in collaborative research to further develop this mouse model of triple-negative breast cancer (TNBC) to study cancer biology and for preclinical testing.  As a Research Tool, patent protection is not being pursued for this technology; more information to access this strain can be found here: https://www.jax.org/strain/030386.

Angiogenesis-Based Cancer Therapeutic

Vascular Endothelial Growth Factor-A (VEGF-A) is an angiogenic agent that drives blood vessel formation in solid tumors and other diseases, such as macular degeneration and diabetic retinopathy. Several therapies that target the ability of VEGF to stimulate angiogenesis have been approved. These therapies regulate VEGF-A activity by binding VEGF-A, thereby blocking VEGF-A from binding to its receptor on target cells. This technology utilizes a different approach to regulating VEGF-A activity by providing a VEGF-A protein antagonist that is produced by engineering native VEGF-A protein.

In silico design of RNA nanoparticles

RNA nanoparticles have the potential to serve as excellent drug or imaging delivery systems due to their designability and versatility. Furthermore, the RNA nanoparticles of the invention are also capable of self-assembly and potentially form nanotubes of various shapes which offer potentially broad uses in medical implants, gene therapy, nanocircuits, scaffolds and medical testing.