A Key Advancement for Human Norovirus Research and Reverse Genetics

The HEK293T/T7 cell line is a novel development in virology research, particularly for studying human noroviruses. This cell line expresses the T7 RNA polymerase, a key enzyme used in reverse genetics systems. Unlike existing technologies, the HEK293T/T7 cell line offers the unique advantage of being able to produce functional T7 RNA polymerase, which is essential for driving transcription from T7 promoters.

Personalized Tumor Vaccine and Use Thereof for Cancer Immunotherapy

Immune checkpoint inhibitors (ICIs) vastly improved the outcome of various advanced cancers; however, many are less likely to respond to single-agent ICI. Tumors with low T-cell infiltration are "immunologically cold" and less likely to respond to single-agent ICI therapy. This diminished response is presumably due to the lack of neoantigens necessary to activate an adaptive immune response. On the other hand, an "immunologically hot" tumor with high T-cell infiltration has an active anti-tumor immune response following ICI treatment.

A New Molecular Scaffold for Targeting hRpn13 as a Treatment for Cancer

This technology includes a new chemical scaffold (with lead compound XL5) against hRpn13 that induces apoptosis, which may have clinical efficacy against cancer. The structure of XL5-conjugated hRpn13 guided the design of XL5-PROTAC degrader compounds that exhibit greater efficacy than previous hRpn13-targeting compounds, as evaluated by selectivity for hRpn13, induction of apoptosis, and loss of cell viability. In cells, XL5-PROTACs revealed the presence of a truncated hRpn13 product that binds to proteasomes and is selectively degraded by XL5-PROTACs.

Discovery of potent and selective D3 antagonist with alleviated hERG liability and optimized pharmacokinetic properties

One of the most challenging hurdles in creating safe and effective new medicines for many diseases is finding drugs that are effective without causing off-target cardiac issues, such as cardiac arrythmias. In collaboration with NIDA, scientists at NCATS have developed a series of novel and highly specific dopamine D3 receptor agonists and antagonists that have potential to target and treat Parkinson’s disease, Schizophrenia, Depression, and substance-use disorders including opioid addiction.

Oral Iron-Chelator Therapy for Treating Developmental Stuttering

This technology discloses the use of small-molecule iron chelators—drugs that bind and remove excess iron—for the oral treatment of developmental stuttering in children and adults. Mouse models carrying human stuttering mutations show both elevated striatal iron and impaired vocalization; daily low-dose deferiprone reverses these speech-like deficits while normalizing brain-iron MRI signals.