Discovery of potent and selective D3 antagonist with alleviated hERG liability and optimized pharmacokinetic properties

One of the most challenging hurdles in creating safe and effective new medicines for many diseases is finding drugs that are effective without causing off-target cardiac issues, such as cardiac arrythmias. In collaboration with NIDA, scientists at NCATS have developed a series of novel and highly specific dopamine D3 receptor agonists and antagonists that have potential to target and treat Parkinson’s disease, Schizophrenia, Depression, and substance-use disorders including opioid addiction.

Oral Iron-Chelator Therapy for Treating Developmental Stuttering

This technology discloses the use of small-molecule iron chelators—drugs that bind and remove excess iron—for the oral treatment of developmental stuttering in children and adults. Mouse models carrying human stuttering mutations show both elevated striatal iron and impaired vocalization; daily low-dose deferiprone reverses these speech-like deficits while normalizing brain-iron MRI signals.

Angubindin-1 Peptide for Transient Blood-Brain Barrier Opening to Boost Chemotherapy in Malignant Glioma

This technology includes a first-in-class synthetic peptide, angubindin-1, designed to temporarily relax the blood-brain barrier (BBB)—the tightly sealed network of brain blood vessel cells that normally blocks most drugs—from the inside. By binding the tricellular tight-junction protein angulin-1/LSR, the peptide creates a reversible “molecular doorway” that lets cancer medicines such as liposomal doxorubicin (Doxil®) reach tumors in the central nervous system (CNS).

Concurrent Use of Atorvastatin During Chemotherapy Reduces Cisplatin-induced Ototoxicity

This technology includes the use of atorvastatin, a medication to manage hypercholesterolemia, as a method to protect patients receiving cisplatin from hearing loss. Cisplatin chemotherapy is indicated in various cancer types in adults and children and is known to cause hearing loss. A patient on atorvastatin during chemotherapy is 46% less likely to acquire a significant cisplatin-induced hearing loss relative to a non-statin user. Atorvastatin is an FDA-approved medication routinely prescribed and well-tolerated clinically.

Zip14-AAV Genetic MRI Reporter System for Non-Invasive Cell & Gene-Therapy Tracking

This technology includes a gene-based magnetic resonance imaging (MRI) reporter platform that harnesses adeno-associated virus (AAV) delivery of the metal transporter Zip14 to create image contrast wherever the gene is expressed. By driving Zip14 from cell-specific promoters, investigators obtain robust, long-lasting signal changes on standard clinical MRI sequences (e.g., MPRAGE and GRE), enabling real-time visualization of living cells and their gene-expression patterns.

Chimeric Antigen Receptors to CD276 for Treating Cancer

Chimeric antigen receptors (CARs) are hybrid proteins consisting of an antibody binding fragment fused to protein signaling domains that cause T-cells which express the CAR to become cytotoxic.  Once activated, these cytotoxic T-cells can selectively eliminate the cells which they recognize via the antibody binding fragment of the CAR.  By engineering a T-cell to express a CAR that is specific for a certain cell surface protein, it is possible to selectively target those cells for destruction.  This is a promising new therapeutic approach known as adoptive cell therapy.

Dual Specific Anti-CD22 Anti-CD19 Bicistronic Chimeric Antigen Receptors (CARs)

Treatment of B-cell acute lymphoblastic leukemia (ALL) and lymphoma using chimeric antigen receptors (CARs) targeting B-cell surface protein CD19 has demonstrated impressive clinical results in children and young adults. Despite the promising results from CD19 CAR therapy, up to 40% of patients, who initially achieve remission, eventually relapse. Relapse or non-response to CD19-directed CAR therapy may be due to low or diminished CD19 expression. Such patients would be predicted to benefit from CAR therapies targeting other B-cell surface proteins, such as CD22.

Chimeric Antigen Receptors to CD22 for Treating Hematological Cancers

Chimeric antigen receptors (CARs) are hybrid proteins consisting of an antibody binding fragment fused to protein signaling domains that cause T-cells which express the CAR to become cytotoxic.  Once activated, these cytotoxic T-cells can selectively eliminate the cells which they recognize via the antibody binding fragment of the CAR.  Thus, by engineering a T-cell to express a CAR that is specific for a certain cell surface protein, it is possible to selectively target those cells for destruction.  This promising new therapeutic approach is known as adoptive cell therapy.

Bivalent, Dual Specific Anti-CD22 Anti-CD19 Chimeric Antigen Receptors (CARs)

Chimeric antigen receptors (CARs) combine an antibody-based binding domain (and single chain fragment variable region, scFv) with T cell receptor signaling domains (CD3 zeta with a costimulatory domain, typically CD28 or 41BB). When T cells express CARs, they are activated in a major histocompatibility complex- (MHC) independent manner to kill tumor cells expressing the target to which the scFv binds.  CAR T cells targeting the B cell antigen CD19 have resulted in remissions in 60-80% of patients with pre-B cell precursor acute lymphoblastic leukemia (BCP-ALL).