Repurposed Use of the Alkaloids Emetine and Cephaeline to Treat Zika Virus Infection

This technology includes the use of two related compounds, Emetine and Cephaeline, as a potent inhibitor of the Zika virus (ZIKV). Emetine and it's analog Cephaeline were identified in a high-throughput assay aimed at identifying anti-ZIKV compounds. Both Emetine and Cephaeline are potent inhibitors of ZIKV infection in cell culture, and Emeline is a potent inhibitor of ZIKV infection in a live mouse model.

Novel ACRV1/ALK2 Inhibitors and Methods for Inhibiting BMP Signaling for the Treatment of Fibrodysplasia Ossificans Progressiva (FOP)

This technology includes the identification and use of novel ACRV1/ALK2 inhibitors for the treatment of fibrodysplasia ossificans progressiva (FOP), an autosomal-dominant rare disease that affects one person in every 1-2 million. FOP is characterized by malformation of the great (big) toes during embryonic development and by progressive heterotopic endochondral ossification (HEO) postnatally, which leads to the formation of a second skeleton of heterotopic bone.

Repurposing CDK Inhibitors for the Treatment of Zika Virus Infection

This invention includes the discovery and use of a group of CDK inhibitors that were found during a drug repurposing screen designed to find compounds that inhibit Zika virus caused cell death. The identified CDK inhibitors have all previously been used in clinical trials for other diseases, potentially reducing the long time course needed for new drug discovery and development.

Novel Codon-Optimized MUT Gene Therapeutic for Methylmalonic Acidemia (MMA)

Methylmalonic Acidemia (MMA) is a metabolic disorder characterized by increased acidity in the blood and tissues due to toxic accumulation of protein and fat by-products resulting in seizures, strokes, and chronic kidney failure. A significant portion of MMA cases stem from a deficiency in a key mitochondrial enzyme, methylmalonyl-CoA mutase (MUT), required to break down amino acids and lipids. Currently, there are no treatments for MMA and the disease is managed primarily with dietary restriction of amino acid precursors and liver-kidney transplantation in severe cases.

Fibroblast Cell Lines (with L444P/RecNci1 Genotype) for the Screening of Small Molecules for Gaucher Disease Treatment

This technology includes two human fibroblast cell lines to be used to study the defects in GBA1 gene and protein and to screen small molecules for involvement in Gaucher disease. Glucocerebrosidase (GBA1 or GCase or beta-glucosidase) is a lysosomal enzyme, responsible for breakdown of a fatty material called glucocerebroside (or glucosyl ceramide). Deficiency or malfunction of GBA1 leads to the accumulation of insoluble glucocerebrosides in tissues, which is a major symptom of Gaucher disease.

DNA Methylation Based Non-invasive Blood Diagnostic Assay for Precision Cancer Detection and Classification

This technology includes a panel of 46 genomic loci of DNA methylation (represented by CpG dinucleotides on different chromosomes) with application in blood-based cancer screening. The markers robustly distinguish tumor from normal samples using 8 loci and classify 13 different tumor types. Using 39 loci, inventors were able to discriminate between individual tumor types or peripheral blood. In 4052 tumor samples from 13 tumor types, the true positive rate of classification was 91.4%.

MLL3 (KMT2C), MLL4, PA1, UTX And PTIP Antibodies for the Treatment of Development Diseases and Cancers

This technology includes polyclonal antibodies against MLL3 (KMT2C), MLL4, PA1, UTX And PTIP for the development of treatments for development diseases and cancer. Enhancers play a central role in cell-type-specific gene expression and are marked by H3K4me1/2. Active enhancers are further marked by H3K27ac. However, the methyltransferases responsible for H3K4me1/2 on enhancers remain elusive. Furthermore, how these enzymes function on enhancers to regulate cell-type-specific gene expression is unclear.

Plasmid for the Study of Bam Complex and Screening of Therapeutic Molecules

This technology includes a plasmid (designated pJH114) that encodes all five subunits of the E. coli Bam (barrel assembly machine) complex under the control of an inducible promoter to be used in the study of the Bam and screen for therapeutic small molecules. The Bam (barrel assembly machine) complex is a highly conserved heterooligomer that catalyzes the integration of membrane proteins that have a beta barrel structure into the outer membrane of Gram-negative bacteria. Research suggests that this complex is essential for the viability of most, if not all bacteria in this class.

In-vivo System to Interrogate the Functions of Mucous Membranes and Identify Mucin/Glycan Mimetics and JAK/STAT Inhibitors for the Treatment of Diseases of the Oral Cavity and Digestive Tract

This technology includes a Drosophila mutant strain that can be used as an in vivo model for diseases of the oral cavity and digestive tract (Sjogren's syndrome, colitis, colon cancer, inflammatory bowel disease), where the mucous membrane is disrupted or non-functional. This mutant lacks a mucous membrane and displays epithelial cell damage, uncontrolled cell proliferation and the up-regulation of conserved signaling pathways (JAK/STAT).