Optimizing RSV Infection Monitoring and High-Throughput Screening Through GFP Expression in the First-Gene Position of Respiratory Syncytial Virus (RSV) Strain A2

In this technology, researchers have engineered a modified version of Respiratory Syncytial Virus (RSV) strain A2 using reverse genetics to incorporate green fluorescent protein (GFP) into the first-gene position. This genetic modification allows for the efficient monitoring of RSV infection and the screening of potential chemical inhibitors. The GFP expression can be easily detected through fluorescence microscopy in live or fixed cells, providing a sensitive tool for both research and drug discovery.

Advancements in Postexposure Prophylaxis: Evaluating High-Potency Rabies-Neutralizing Monoclonal Antibodies

This technology represents a significant advancement in the field of rabies prevention, focusing on the development of highly potent rabies-neutralizing monoclonal antibodies (mAbs) for use in postexposure prophylaxis (PEP). With two mAbs, F2 and G5a, displaying exceptional neutralizing titers of 1154 and 3462 International Units (IUs) per milligram, respectively, these antibodies have the potential to offer enhanced protection against rabies when administered alongside rabies vaccines.

A Fundamental Tool for Efficient Recovery of RNA Viruses through Reverse Genetics

BSR T7/5 cells represent a foundational advancement in virology, offering a robust platform for the recovery of RNA viruses via reverse genetics. Established over 20 years ago, these cells have proven instrumental in the recovery of a wide array of RNA viruses, particularly those belonging to the mononegavirales order.

TMC1, a Deafness-Related Gene

Hearing loss is a common communication disorder affecting nearly 1 in 1,000 children in the United States alone, and nearly 50% of adults by the age of eighty. Hearing loss can be caused by environmental and disease-related factors; however, hearing loss due to genetic factors accounts for approximately 50% of cases.

Four Chimpanzee Monoclonal Antibodies that Neutralize Hepatitis A Virus

This invention claims antibodies and/or fragments thereof specific for hepatitis A virus (HAV) and the use of the antibodies in the diagnosis, prevention, and treatment of hepatitis A. Hepatitis A is the most common type of hepatitis reported in the United States, which reports an estimated 134,000 cases annually, and infects at least 1.4 million people worldwide each year. HAV is a positive sense RNA virus that is transmitted via the fecal-oral route, mainly through contaminated water supplies and food sources.

Live Attenuated Vaccine to Prevent Disease Caused by West Nile Virus

West Nile virus (WNV) has recently emerged in the U.S. and is considered a significant emerging disease that has embedded itself over a considerable region of the U.S. WNV infections have been recorded in humans as well as in different animals. From 1999-2014, WNV killed 1,765 people in the U.S. and caused severe disease in more than 41,762 others. This project is part of NIAID's comprehensive emerging infectious disease program.

Stem Cell Factor-responsive FcepsilonRI Bearing Human Mast Cell Line LAD2

A human mast cell line LAD2 that more closely resembles normal in vivo and in vitro human mast cells by expressing functional FcepsilonRI receptors and responding to stem cell factor (SCF) with proliferation, as described in Leuk Res. 2003 Aug;27(8):677-82 and developed by the laboratory of Dr. Dean Metcalfe at the National Institute of Allergy and Infectious Diseases.  This cell line also releases mediators by cross-linking FcgammaRI (CD64) receptors and express FcgammaRII (CD32).

Dengue Tetravalent Vaccine Containing a Common 30 Nucleotide Deletion in the 3'-UTR of Dengue Types 1, 2, 3, and 4

The invention relates to a dengue virus tetravalent vaccine containing a common 30-nucleotide deletion (delta30) in the 3'-untranslated region (UTR) of the genome of dengue virus serotypes 1, 2, 3, and 4. The previously identified delta30 attenuating mutation, created in dengue virus type 4 (DEN4) by the removal of 30 nucleotides from the 3'-UTR, is also capable of attenuating a wild-type strain of dengue virus type 1 (DEN1).

Mouse Monoclonal Antibodies Against Human IKKgamma/NEMO Protein

NF-kB has been found to be important in immune responses, cell proliferation, apoptosis, and in organ development. Several years ago it was discovered that an IKKgamma/NEMO protein was essential as an adaptor molecule to mediate TNF-alpha, IL-1, and oncoprotein induced activation of NF-kB. Mutation in IKKgamma/NEMO also results in two human genetic diseases, Familial incontinentia pigmenti and hypohidrotic/anhidrotic ectodermal dysplasia. The NIH announces mouse monoclonal antibodies to IKKgamma/NEMO that are far superior to other immunological reagents.