Monoclonal Antibodies That React With the Capsule of <i>Bacillus anthracis</i>

Bacillus anthracis is the causative agent of anthrax and is surrounded by a polypeptide capsule of poly-gamma-D-glutamic acid (gammaDPGA). gammaDPGA is poorly immunogenic and has antiphagocytic properties. The bacterial capsule is essential for virulence. Antibodies to the capsule have been shown to enhance phagocytosis and killing of encapsulated bacilli. These antibodies in combination with antibodies that neutralize the toxins of B. anthracis could provide enhanced protection by their dual antibacterial and antitoxic activities.

Caspase Inhibitors Useful for the Study of Autoimmune or Inflammatory Diseases

Novel and potent caspase 1 inhibitors are available for licensing. In particular, this technology discloses potent and selective caspase 1 inhibitors that target the active site of the enzyme. Caspase 1 is known to play a pro-inflammatory role in numerous autoimmune and inflammatory diseases and therefore represents an excellent target for treatment of a broad range of diseases, including but not limited to Huntington's, amyotrophic lateral sclerosis, ischemia, rheumatoid arthritis, osteoarthritis, inflammatory bowel disease, and sepsis.

Novel Antigen for Use as Vaccine Against Nematode Infection

This invention describes a new vaccine against Strongyoides stercoralis, which establishes a parasitic infection that affects an estimated 100-200 million people worldwide. The potential for fatal disease associated with S. stercoralis infection and the difficulty in treating hyperinfection underscores the need for prophylactic vaccines against the disease. This vaccine uses S. stercoralis immunoreactive antigen (SsIR); a novel antigen capable of providing 70-90 % protection for mice immunized with the antigen.

Pyruvate Kinase M2 Activators for the Treatment of Cancer

NIH investigators have discovered a series of small compounds with the potential to treat a variety of cancers as well as hemolytic anemia. Contrary to most cancer medications, these molecules can be non-toxic to normal cells because they target a protein specific to the metabolic pathways in tumors, thus representing a significant clinical advantage over less-specific chemotherapeutics.

Monoclonal Antibodies Against Poliovirus

Early work by Hammond at al. showed gamma globulin to be effective for the prevention of poliomyelitis. Therefore, passive immunotherapy could be another way to treat chronic excretors. Even though prior attempts to use intravenous immunoglobulin (IVIG) and breast milk were unsuccessful, there is reason to think that higher doses of antipoliovirus antibodies could result in complete clearance of poliovirus from chronically infected individuals.

Salen-Manganese Compounds for Therapy of Viral Infections

Salen-manganese compounds are synthetic, stable, low toxicity, low cost agents that may provide protection from immune reaction-related oxidative cell damage associated with many illnesses. In particular, oxidative cell damage has been associated with many viral infections including influenza. This invention demonstrates that treating mice with salen-manganese compounds, after lethal pandemic influenza virus infection, significantly enhances survival. Salen-manganese treatment also reduces lung pathology and also improved cellular recovery and repair.

Novel Tocopherol and Tocopheryl Quinone Derivatives as Therapeutics for Lysosomal Storage Disorders

Novel tocopherol derivatives and tocopheryl quinone derivatives useful in the decrease of lysosomal substrate accumulation, the restoration of normal lysosomal size, and the treatment of lysosomal storage disorders (LSDs) are provided. The inventors have discovered that tocopherol and tocopheryl quinone derivatives with side chain modifications (such as terminal tri-halogenated methyl groups) exhibit improved pharmacokinetics, modulation of mitochondrial potential and restoration of some LSDs phenotypes.