Prevention or Treatment of Viral Infections by Inhibition of the Histone Methyltransferases EZH1/2

Herpes simplex viral infections, including herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), are exceptionally common worldwide. These viruses establish lifelong persistent infections with cycles of lytic reactivation to produce recurrent diseases including oral and genital lesions, herpetic keratitis/blindness, congenital-developmental syndromes, and viral encephalitis. Infection with HSV-2 increases the rate of human immunodeficiency virus (HIV) transmission in coinfected individuals. DNA replication inhibitors are typically used to treat herpesvirus infections.

Francisella Lipids as Broad Anti-inflammatory Therapeutics

Anti-inflammatory treatments, particularly those used in the context of viral infection, have been shown to greatly inhibit the overall immune response, which can result in poor immunity and failure to control or clear the infection. Novel alternatives that can effectively attenuate inflammation without the more serious side effects of steroid medications (e.g., global immune suppression, muscle weakness, etc.) may have substantial use across a wide range of disease areas.

The Use of alpha-4 beta-7 integrin Inhibitors to Inhibit HIV Transmission and Infection

This invention involves the use of inhibitors of alpha-4 beta-7 (a4b7) integrin to inhibit HIV transmission/infection, as a prophylactic to inhibit onset of the acute stage of HIV infection or to treat HIV infection. The a4b7 integrin inhibitors were previously developed for use in other diseases, such as multiple sclerosis or inflammatory bowel disease.

Broadly Neutralizing Human Anti-HIV Monoclonal Antibody 10E8 and Related Antibodies Capable of Neutralizing Most HIV-1 Strains

The uses for human anti-HIV monoclonal antibody 10E8 and its variants include passive immunization, therapeutic vaccination, and the development of vaccine immunogens. 10E8 is one of the most potent HIV-neutralizing antibodies isolated and it neutralizes up to 98% of diverse HIV-1 strains. 10E8 is specific to the membrane-proximal external region (MPER) of the HIV envelope protein gp41 and 10E8 is orthogonal to other anti-HIV antibodies. In combination with other antibodies 10E8 may provide an antibody response that neutralizes nearly all strains of HIV-1.

Recombinant Sulfated HIV Envelope Protein and Methods for Making Protein

This technology comprises sulfated recombinant gp120 proteins and peptides. Also included are methods for producing sulfated recombinant gp120 proteins. The focus of this technology is on sulfation of two tyrosines in the V2 loop of the HIV major envelope glycoprotein, gp120, which increase the stability of gp120 and promote the synthesis of gp120 protein in its native "closed" conformation. Gp120 in its native form is highly sulfated; however, recombinant gp120 produced for vaccines or structural analyses typically display low levels of V2 tyrosine sulfation.

Dual-Germline Antibody Engager Chimeric HIV–1 Immunogens

Despite four decades of intensive research, a safe and effective HIV-1 vaccine remains elusive due to the extreme difficulty in eliciting broadly neutralizing antibodies (bNAbs), which recognize and block HIV-1 from entering healthy cells. Only rare natural HIV-1 envelopes (Envs) promote the activation and expansion of naive B cells expressing unmutated germline antibodies of various bNAb lineages, but they typically do so for a single lineage for the same neutralization site.

HLA-class II-restricted T Cell Receptors for PIK3CA “Hotspot” Mutations, E545K and N345K

Summary: 

The National Cancer Institute (NCI) seeks co-development partners and/or licensees for a collection of T cell receptors (TCRs) that specifically target PIK3CA mutations to treat patients with tumors expressing these mutations in the context of HLA-DPA1*01:03:01, HLA-DPB1*04:01:01 or HLA-DRB1*04:01.

Description of Technology:

Next-Generation 5-HT-2B Serotonin-Receptor Antagonists for Anti-Fibrotic & Cardiopulmonary Therapy

This technology includes a family of small-molecule antagonists that selectively block the 5-HT2B serotonin receptor—an upstream driver of tissue-remodeling—to address fibrotic, cardiopulmonary and related disorders. Built on a conformationally-locked “(N)-methanocarba” nucleoside scaffold, the compounds show nanomolar potency, >30–400-fold selectivity over the closely related 5-HT2C receptor, and favorable oral bioavailability in rodents.