Coumarin Luciferins and Mutant Luciferases for Bioluminescence Imaging

Bioluminescence imaging with luciferin-luciferase pairs is a well-established technique for tracking cells and other biological features in animal models. Bioluminescent is a chemical process which does not require an external input for excitation. Bioluminescent imaging is often limited to monitoring single processes in vivo due to the lack of distinguishable probes. Additionally, existing probes typically operate with light in the visible range, which is highly scattered and exhibits poor tissue penetration. 

Novel Human Insulin Cα-Peptide as an Antagonist for Islet and Brain Amyloidosis

Over 32 million Americans are living with Diabetes and newly diagnosed cases of type 1 and type 2 diabetes is increasing. A defining feature of type 2 diabetes mellitus (T2DM) is the accumulation of islet amyloid polypeptide (IAPP) fibrils in pancreatic islets. Such accumulations form amyloid plaques, referred to as islet amyloidosis. Mounting evidence suggests that islet amyloidosis plays a causative role in the development and progression of ß-cell dysfunction in T2DM.

IgG4 Hinge Containing Chimeric Antigen Receptors Targeting Glypican-1 For Treating Solid Tumors

Pancreatic cancer is the fourth most common cause of cancer deaths in the U.S. The overall 5-year survival rate is 8.5%. Glypican-1 (GPC1) is a cell surface heparan sulfate proteoglycan protein overexpressed in pancreatic cancer. Due to preferential expression, GPC1 represents a potential candidate for targeted therapy for pancreatic cancer and other GPC1-expressing cancers, such as prostate.

Tempol as a Therapeutic to Treat Covid-19 Via Inhibition of Viral Replication

Despite several partially effective prophylactic vaccines for SARS-CoV-2 exist, patients worldwide still succumb to COVID-19. New therapeutics to treat this disease are still needed.  Upon host invasion, a critical step in the pathogenesis of COVID-19 is intracellular replication of SARS-CoV-2 before viral particles invade nearby healthy cells. This triggers an extreme inflammatory response that may lead to acute respiratory distress syndrome (ARDS) or transmission to another host.

Personalized Tumor Vaccine and Use Thereof for Cancer Immunotherapy

Immune checkpoint inhibitors (ICIs) vastly improved the outcome of various advanced cancers; however, many are less likely to respond to single-agent ICI. Tumors with low T-cell infiltration are "immunologically cold" and less likely to respond to single-agent ICI therapy. This diminished response is presumably due to the lack of neoantigens necessary to activate an adaptive immune response. On the other hand, an "immunologically hot" tumor with high T-cell infiltration has an active anti-tumor immune response following ICI treatment.

Cross Species Single Domain Antibodies Targeting PD-L1 for Treating Solid Tumors

Programed Death-Ligand 1 (PD-L1, also known as B7-H1 or CD274) is a cell surface protein that binds to Programmed Cell Death Protein 1 (PD-1, also known as CD279). An imbalance in PD-1/PD-L1 activity contributes to cancer immune escape.  PD-1 is expressed on the surface of antigen-stimulated T cells. The interaction between PD-L1 and PD-1 negatively regulates T cell-mediated immune responses. It has been suggested that disrupting the PD-L1/PD-1 signaling pathway can be used to treat cancers. The aberrant expression of PD-L1 on multiple tumor types supports this suggestion.

Anti-Viral Polypeptide Griffithsin: Compounds, Compositions, and Methods of Use

This technology describes additional methods of using the griffithsin anti-viral polypeptides described in related NCI invention (reference number E-106-2003).  Specifically, this invention describes the use of GRFT to inhibit viral infection of hepatitis C viral infection, a severe acute respiratory syndrome (SARS) viral infection, an H5N1 viral infection, or an Ebola viral infection. 

An Anti-Viral Polypeptide: Griffithsin

Virus entry into a susceptible host cell is the first step in the formation of all viral diseases. Controlling viral infections by disrupting viral entry is advantageous for antibody-mediated neutralization by the host’s immune system and as a preventive and therapeutic antiviral strategy. Plant-derived carbohydrate-binding proteins (lectins) have emerged as a new class of antiviral biologics by taking advantage of a unique glycosylation pattern only found on the surface of viruses.

Human and Improved Murine Monoclonal Antibodies Against CD22

CD22 is a common cell surface glycoprotein expressed in B-cells and present in B-cell lymphomas; e.g., hairy cell leukemia (HCL), non-Hodgkins lymphoma (NHL), chronic lymphoblastic leukemia (CLL), and other cancers. It is therefore a target for cancer immunotherapy. Conjugation of anti-CD22 monoclonal antibodies with toxins or drugs has shown promise in clinical trials. However, all monoclonal anti-CD22 antibodies used in clinical trials are of murine origin.

Chimeric Antigen Receptors to CD22 for Treating Hematological Cancers

Chimeric antigen receptors (CARs) are hybrid proteins consisting of an antibody binding fragment fused to protein signaling domains that cause T-cells which express the CAR to become cytotoxic.  Once activated, these cytotoxic T-cells can selectively eliminate the cells which they recognize via the antibody binding fragment of the CAR.  Thus, by engineering a T-cell to express a CAR that is specific for a certain cell surface protein, it is possible to selectively target those cells for destruction.  This promising new therapeutic approach is known as adoptive cell therapy.