T-cell Phenotypes Associated with Clinical Response to Adoptive Immunotherapy

Adoptive T-cell therapy (ACT) utilizes tumor-reactive T cells to induce disease remission. While ACT has been used effectively to treat metastatic melanoma and certain epithelial cancers, most patients do not respond to treatment. Although the mechanisms underlying this variable response to therapy are not fully elucidated, the phenotype of the adoptively transferred cell is known to be a key determinant of treatment efficacy.

New Heterocyclic Scaffold-Based Inhibitors of the Polo-Box Domain of Polo-like Kinase 1 for the Treatment of Cancer

Polo-like kinase 1 (Plk1), a member of the Polo-like kinase family, plays a critical role in regulating mitosis and cell cycle progression. Aberrant expression of Plk1 has been observed in a variety of human cancers, and it is known to be associated with tumorigenesis as well as poor prognosis in cancer patients. Unlike normal cells, some cancer cells are dependent on augmented Plk1 levels to remain viable and are killed when Plk1 function is attenuated.

Synergistic Use of Exo VII Inhibitors And Quinolone Antibiotics For Treating Bacterial Infection

Topoisomerase poisons, such as quinolone antibiotics, are widely used as anticancer drugs and antibiotics. Quinolone antibiotics act by trapping prokaryotic type IIA topoisomerases (DNA gyrase and TOPO IV), resulting in irreversible topoisomerase cleavage complexes. However, current U.S. Food and Drug Administration (FDA) guidance reserves the use of quinolones for the most serious bacterial infections due to their associated side effects and to limit the occurrence of drug-resistant bacterial strains.

Improved Gene Therapy Vectors for the Treatment of Glycogen Storage Disease Type Ia (GSD-1a)

GSD-Ia is an inherited disorder of metabolism associated with life-threatening hypoglycemia, hepatic malignancy, and renal failure caused by the deficiency of glucose-6-phosphatase-alpha (G6Pase-alpha or G6PC). Current therapy, which primarily consists of dietary modification, fails to prevent long-term complications in many patients, including growth failure, gout, pulmonary hypertension, renal dysfunction, osteoporosis, and hepatocellular adenomas (HCA).

High-Throughput Generation of Induced Pluripotent Stem Cells Carrying Antigen-Specific T Cell Receptors from Tumor Infiltrated Lymphocytes

One form of adoptive T cell therapy (ACT) consists of harvesting tumor infiltrating lymphocytes (TIL), screening and isolating TIL which display tumor antigen-specific T-cell receptors (TCR), expanding the isolated T cells in vitro, and reinfusing them into the patient for treatment. While highly active in the treatment of certain cancers (e.g., melanoma), current methods used to produce cancer-reactive T cells require significant time and may not adequately identify the desired TCRs which bind cancer targets.

Iodonium Analogs as Inhibitors of NADPH Oxidases and other Flavin Dehydrogenases and their Use for Treating Cancer

Diverse human cancers like colorectal, pancreatic, ovarian, melanoma, and pre-cancers express NADPH oxidases (NOX) at high levels. Reactive oxygen species (ROS) produced from metabolic reactions catalyzed by NOX in tumors are essential to the tumor’s growth. Though drugs that inhibit ROS production by NOX could be effective against a variety of human cancers, these types of drugs are not widely available.

Single Domain Antibodies (Nanobodies) Targeting SARS-CoV-2 for treating COVID-19

The COVID-19 pandemic is a worldwide public health crisis with over 100 million confirmed cases and 2.4 million deaths as of February 2021. COVID-19 is caused by a novel coronavirus called SARS-CoV-2. SARS-COV-2 infects hosts via its spike (S) protein. The S protein contains the receptor binding domain (RBD) that binds to the angiotensin converting enzyme 2 (ACE2) receptor on human cells to facilitate viral entry and infection. There are few therapeutics available for COVID-19 patients that directly target SARS-CoV-2.

3-o-sulfo-galactosylceramide Analogs as Activators of Type II Natural Killer T (NKT) Cells to Reduce Cancer Metastasis to the Lung

Lung metastases are a sign of widespread cancer with poor survival rate. Lung malignancies can originate from almost any cancer type spread via the blood stream. Most common lung metastases are from melanoma, breast cancer, bladder cancer, colon cancer, prostate cancer, neuroblastoma, and sarcoma. Living more than 5 years with lung metastases is uncommon, and surgical procedures are only effective with localized lung metastases. Lung metastasis are extremely frequent and resistant to regular treatment due to immunosuppressive regulatory sulfatide-reactive type II NKT cells.

Monomeric and Oligomeric Compounds as Contraceptives and Endocrine Therapeutics

The options for male contraceptives are limited. Research is ongoing to develop a male contraceptive based on hormonal activity. Testosterone is one of the hormones necessary in producing sperm.  Testosterone is absolutely required as a hormone for male fertility. Derivatives of testosterone for male contraceptives currently in clinical trials are associated with estrogenic deficiency. This deficiency can cause several issues including, but not limited to, bone density loss, risk of obesity, cardiovascular disease, and/or ineffective carbohydrate or lipid metabolism. 

Oxynitidine Derivatives Useful as Inhibitors of Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1) for Treating Cancer

Summary: 

The National Cancer Institute (NCI) is actively seeking potential licensees and/or co-development research collaboration partners interested in advancing oxynitidine derivatives as novel inhibitors of topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) for cancer treatment. These TOPI and TDP1 inhibitors, when administered together, demonstrate enhanced anti-tumor efficacy.

Description of Technology: