T Cell Receptors Targeting p53 Mutations for Cancer Immunotherapy and Adoptive Cell Therapy

The tumor protein p53 is a cell cycle regulator. It responds to DNA damage by triggering the DNA repair pathway and allowing cell division to occur or inducing cell growth arrest, cellular senescence, and/or apoptosis. p53 therefore acts as a tumor suppressor by preventing uncontrolled cell division. However, mutations in p53 that impair its cell cycle regulatory functions can induce uncontrolled cell division leading to cancer.

3D Vascularized Human Ocular Tissue for Cell Therapy and Drug Discovery

Degeneration of retinal tissues occurs in many ocular disorders resulting in the loss of vision. Dysfunction and/or loss of Retinal Pigment Epithelium Cells (RPE) and disruption of the associated blood retinal barrier (BRB) tissue structures are linked with many ocular diseases and conditions including: age-related macular degeneration (AMD), Best disease, and retinitis pigmentosa. Engineered tissue structures that are able to replicate the function of lost BRB structures may restore lost vision and provide insight into new treatments and mechanisms of the underlying conditions. 

Bone Marrow Mesenchymal Stem Cell (BMSC)-Derived Exosomes for the Treatment of Glaucoma

Glaucoma is one of the world’s leading causes of irreversible blindness. There is no cure and vision lost from glaucoma cannot be restored. Glaucoma is associated with fluid build-up in the eye resulting in an increased intraocular pressure (IOP). The pressure may cause damage to the optic nerve and lead to progressive degeneration of retinal ganglion cells (RGC) and vision loss. Currently, available treatments for glaucoma delay progression by reducing IOP, but no therapies exist to directly protect RGC from degradation and loss. 

Synthesis and Characterization of Bismuth Beads for Trans Arterial Chemo Embolization Under Computed Tomography (CT) Guidance

Existing microsphere technologies are used as therapy for certain cancers. The therapy is by way of occlusion, when the microspheres are delivered into blood vessels that feed a tumor. The physical dimensions of the microspheres occlude the blood supply and thus, killing the tumor. Some microspheres have also been modified to bind protein, elute drugs, and reduce inflammatory reactions as part of the therapy. However, one technical short-coming of existing microsphere technology is a limited capability to be visualized in real-time.

Topical Sodium Nitrate Ointment for Sickle Cell Disease

Chronic leg ulcers are a debilitating vasculopathic complication for some patients with sickle cell disease (SCD). Prevalence of leg ulcers varies based on age and geographic location; about 5-10% of all SCD patients may suffer leg ulcers. These leg ulcers are painful, result in infections, hospitalization, disability, and negatively impact the patient’s social and psychological wellbeing on an ongoing basis.

Methods for Producing Stem Cell-Like Memory T Cells for Use in T Cell-Based Immunotherapies

T cells currently employed for T cell-based immunotherapies are often senescent, terminally differentiated cells with poor proliferative and survival capacity. Recently, however, scientists at the National Cancer Institute (NCI) identified and characterized a new human memory T cell population with stem cell-like properties. Since these T cells have limited quantities in vivo, the scientists have developed methods by which high numbers of these cells can be generated ex vivo for use in T cell-based immunotherapies.

Method for Reproducible Differentiation of Clinical Grade Retinal Pigment Epithelium Cells

The retinal pigment epithelium (RPE) is a cell monolayer with specialized functions crucial to maintaining the metabolic environment and chemistry of the sub-retinal and choroidal layers in the eye. Damage or disease causing RPE cell loss leads to progressive photoreceptor damage and impaired vision. Loss of RPE is observed in many of the most prevalent cases of vision loss, including age related macular degeneration (AMD) and Best disease.

Nucleic Acid Nanoparticles (NANP) and Methods of Using Same for Controlled Immunomodulation

The technology is directed to compositions and methods of designing nucleic acid nanoparticles (NANPs) composed entirely of DNA, RNA, or DNA and RNA to achieve desirable immunostimulation and decrease undesirable effects on the immune system by changing the composition of the NANP. Benefits of the invention include the desirable activation of the immune system by these particles to increase the efficacy of vaccines and immunotherapies.

Fusion Proteins as HIV-1 Entry Inhibitors

Soluble forms of human CD4 (sCD4) inhibit HIV-1 entry into immune cells.  Different forms of sCD4 and their fusion proteins have been extensively studied as promising HIV-1 inhibitors – including in animal models and clinical trials.  However, they have not been successful in human studies due to their transient efficacy.  sCD4 is also known to interact with class II major histocompatibility complex (MHCII) and, at low concentrations, could enhance HIV-1 infectivity.