Griffithsin-Based Anti-viral Therapeutics with Improved Stability and Solubility

Griffithsin is a potent anti-viral protein with activity against HIV, HCV, Sars, HSV 1 & 2 and other viruses.  It is active against HIV and HCV at picomolar concentrations.  Griffithsin is moving into clinical trials as an anti-HIV microbicide. Based on the structure of griffithsin and the necessities of pharmaceutical product development and regulatory approval, certain mutations in the sequence of griffithsin have been generated which could add to the stability and solubility of the protein.

Anti-bacterial Treatments Using Peptide-Based Inhibitors of the STAT3-IL10 Pathway

Tuberculosis (TB) is an infectious disease that typically affects the lungs. Current therapies include a panel of antibiotics given over a range of 6-9 months. As a result of the expense of treatment, the extended timeframe needed for effective treatment, and the scarcity of medicines in some developing countries, patient compliance with TB treatment is very low and results in multi-drug resistant TB (MDR-TB). There remains a need for a faster, more effective treatment for TB.

Methods of making and using dopamine receptor selective antagonists/partial agonists

Dopamine is a major neurotransmitter in the central nervous system and among other functions is directly related to the rewarding effects of drugs of abuse.  Dopamine signaling is mediated by D1, D2, D3, D4 and D5 receptors.  The dopamine D3 receptor is a known target to treat a variety of neuropsychiatric disorders, including substance use disorders (e.g. cocaine and opioid), schizophrenia and depression.

Small Molecule Inhibitors of Drug Resistant Forms of HIV-1 Integrase

Integrase strand transfer inhibitors (“INSTIs”) are currently in use as a component of prophylactic antiretroviral therapy for preventing HIV-1 infection from progressing to AIDS. Three INSTIs are approved by the FDA for inclusion in antiretroviral regiments: raltegravir (RAL), elvitegravir (EVG) and dolutegravir (DTG). Clinicians have already identified several HIV-1 integrase mutations that confer resistance to RAL and EVG, and additional mutations that confer resistance to all three INSTIs has been identified in the laboratory.

B-cell Surface Reactive Antibodies for the Treatment of B-Cell Chronic Lymphocytic Leukemia

B-cell chronic lymphocytic leukemia (B-CLL) is a cancer characterized by a progressive accumulation of functionally incompetent lymphocytes.  Despite high morbidity and mortality, the only available potential cure is allogeneic hematopoietic stem cell transplantation (alloHSCST).  However, there is less than a 50% chance of finding a matching bone marrow or blood donor for B-CLL patients.  Other clinically tested targeted therapies such as rituximab and alemtuzumab target both malignant and normal B cells, resulting in immunosuppression.

Use of Cucurbitacins and Withanolides for the Treatment of Cancer

Certain members of the cucurbitacin and Withanolide family have been identified that can sensitize some tumor cell lines to cell death (apoptosis) on subsequent exposure of the cells to pro-apoptotic receptor agonists (PARAS) of the TRAIL "death receptors". These PARAS include TRAIL itself, and agonist antibodies to two of its receptors death receptor-4 (DR4 or TRAIL-R1) and death receptor 5 (DR5, TRAIL-R2). 

Ex-vivo Production of Regulatory B-Cells for Use in Auto-immune Diseases

Regulatory B-cells (Breg) play an important role in reducing autoimmunity and reduced levels of these cells are implicated in etiology of several auto-inflammatory diseases. Despite their impact in many diseases, their physiological inducers are unknown.  Given that Bregs are a very rare B-cell, identifying factors that promote their development would allow in vivo modulation of Breg levels and ex-vivo production of large amounts of antigen-specific Bregs to use in immunotherapy for auto-inflammatory diseases.