Small Molecule Inhibitors of Clk and Dyrk Kinases for Potential Therapeutic Intervention of Down Syndrome, Alzheimer's Disease and Cancer
Identification and Use of 12/15-Lipoxygenase (LOX) Inhibitors for Post-Strike Treatment
SARS-CoV-2 Pseudotyping Plasmids for Cutting-Edge Studies
NIAID scientists have developed plasmids that allow for production of pseudoviruses expressing SARS-CoV-2 spike protein. As SARS-CoV-2 is a lethal airborne virus, it must be handled in high-containment Biosafety Level 3 (BSL-3) laboratories that require strict airflow, ventilation and decontamination procedures.
A Rapid Method for Producing Antibodies
Antibodies are specialized proteins produced by the immune system which target and neutralize foreign materials, such as viruses or bacteria. Antibodies have a variety of useful applications in diagnostics, therapeutics, and as research reagents. Despite their widespread use there is no standard method to produce antibodies, and currently available methods are labor and time intensive.
Soluble Antigen-Based ELISA for the Detection of B. malayi Infections
The technology presented is a breakthrough in the diagnosis of lymphatic filariasis, specifically targeting the B. malayi pathogen. It encompasses a novel soluble antigen extract used in both IgG and IgG4-based ELISA tests, aimed at detecting the presence of the filarial infection. This innovation serves as a cornerstone for a CLIA-certified reference test, established and utilized in Dr. Nutman's laboratory since the late 1980s.
Compounds and Methods for Treating Brain Injury
Replicative-Defective Mutant Human Cytomegalovirus: Potential Applications in Vaccinology and Cancer Immunotherapy
The potential applications of a replicative-defective mutant form of human cytomegalovirus (HCMV) are significant in the fields of vaccinology and cancer immunotherapy. This innovative approach involves engineering a mutant HCMV that can selectively target specific cells. Firstly, it holds promise as a vaccine candidate for protecting against HCMV infection, given the success of a similar strategy against herpes simplex virus in animal models.
Optimizing RSV Infection Monitoring and High-Throughput Screening Through GFP Expression in the First-Gene Position of Respiratory Syncytial Virus (RSV) Strain A2
In this technology, researchers have engineered a modified version of Respiratory Syncytial Virus (RSV) strain A2 using reverse genetics to incorporate green fluorescent protein (GFP) into the first-gene position. This genetic modification allows for the efficient monitoring of RSV infection and the screening of potential chemical inhibitors. The GFP expression can be easily detected through fluorescence microscopy in live or fixed cells, providing a sensitive tool for both research and drug discovery.
Advancements in Postexposure Prophylaxis: Evaluating High-Potency Rabies-Neutralizing Monoclonal Antibodies
This technology represents a significant advancement in the field of rabies prevention, focusing on the development of highly potent rabies-neutralizing monoclonal antibodies (mAbs) for use in postexposure prophylaxis (PEP). With two mAbs, F2 and G5a, displaying exceptional neutralizing titers of 1154 and 3462 International Units (IUs) per milligram, respectively, these antibodies have the potential to offer enhanced protection against rabies when administered alongside rabies vaccines.