Nucleic Acid Detection of the Fungal Pathogen Histoplasma capsulatum from Clinical and Environmental Samples

This invention relates to detecting Histoplasma capsulatum by PCR using oligonucleotide probes specific for the fungus. Histoplasmosis is a mycotic infection of varying severity, usually localized in the lungs. Caused by H. capsulatum, infections are usually symptomatic but can develop into chronic disease, especially in immunocompromised individuals.

Diisocyanate Specific Monoclonal Antibodies for Occupational and Environmental Monitoring of Polyurethane Production Exposure-related Asthma and Allergy and Clinical Diagnosis

CDC researchers have developed monoclonal antibodies useful as diagnostics for diisocyanate (dNCO) exposure and for toxicity characterization of specific dNCOs. Currently, dNCOs are used in the production of all polyurethane products and are the most commonly reported cause of occupational-induced asthma and also linked to allergic contact dermatitis. Presumptive diagnosis of dNCO asthma is presently dependent on criteria such as work history, report of work-related asthma-like symptoms and nonspecific airway reactivity to methacholine challenge.

Personal Air Sampler for Collecting Airborne Aerosol Particulates for Molecular Analysis by Size

This invention consists of a sampling apparatus that utilizes one or more cyclone separators to collect airborne particles from the atmosphere. The apparatus not only separates out aerosols from the atmosphere, but also serves as a collection tube for aerosol particles. Through its unique design, this CDC-developed apparatus is able to use the centrifugal force of the air flow on aerosolized particles forcing them to separate by size. Since the sample is collected directly in a microcentrifuge tube, in situ analysis of the ambient particulates can be performed.

Non-radioactive, Miniature Bipolar Aerosol Particle Charger for Personal, Portable Instrumentation

This CDC developed invention is a novel device for a miniature, nonradioactive bipolar charger to electrically charge aerosol particles for use in personal and portable aerosol instrumentation. Such devices are an integral component of aerosol instruments employing electrical mobility-based techniques. Current, commercial state-of-the-art mobility instruments employ aerosol chargers using radioactivity to achieve bipolar particle charging and, therefore, are not suitable for field-portable instruments.

Device to Measure Muscle Contractile-Relaxant and Epithelial Bioelectric Responses of Perfused, Intact Tracheal Airways Tissue In Vitro

CDC and collaborative researchers have developed a device allowing for simultaneous measurement of smooth muscle contractile/relaxant activity and transepithelial potential difference (Vt) [or short circuit currents (Isc)] and resistance (Rt) within an intact airway in vitro. Investigation of the underlying mechanisms of lung diseases, such as asthma or cystic fibrosis, involves understanding the roles of airway smooth muscle and epithelium.

Physiologic Sampling Pump Capable of Rapidly Adapting to User Breathing Rate

This CDC developed physiologic sampling pump (PSP) overcomes shortcomings of previous devices by the use of calibrated valves in conjunction with a constant speed pump. This novel approach obviates typical PSP inertia that inherently limits system response, functionality and accuracy. All prior PSP designs have attempted to follow a user's breathing pattern by changing pump speed, thereby altering sampling rate. In that approach, pump inertia will limit system response and function due to the time required to adjust speed.

Ultrasonic in situ Respirator Seal-Leakage Detection with Real-time Feedback Capabilities

This CDC invention entails methods and apparatuses for in situ testing seal integrity and improved operation of respiratory masks (respirators). A variety of external factors, such as individual face shape, user environment, mask age and material used to construct the respirator, can lead to device malfunction and failure to sufficiently protect a user. To address these limitations, this invention relies on ultrasonic wave detection to assess face seal quality and other potential leak paths, as needed.

Auscultatory Training System and Telemedicine Tool with Accurate Reproduction of Physiological Sounds

This CDC developed auscultatory training apparatus includes a database of prerecorded physiological sounds (e.g., lung, bowel, or heart sounds) stored on a computer for playback. Current teaching tools, which utilize previously recorded sounds, suffer from the disadvantage that playback environments cause considerable distortion and errors in sound reproduction. For example, to those trainees using such systems, the reproduced respiratory sounds do not “sound” as if they are being generated by a live patient.

Computer Controlled Aerosol Generator with Multi-Walled Carbon Nanotube Inhalation Testing Capabilities

This invention pertains to a CDC developed sonic aerosol generator that provides a controllable, stable concentration of particulate aerosol over a long period of time for aerosol exposure studies. Specifically, in situ testing data indicate uniform aerosol stability can be maintainable for greater than 30 hours at concentrations of 15 mg/m3 or more. Additionally, the technology was specifically developed for, and validated in, animal studies assessing exposure to airborne multi-walled carbon nanotubes (MWCNT).