Small Molecule Inhibitors of Clk and Dyrk Kinases for Potential Therapeutic Intervention of Down Syndrome, Alzheimer's Disease and Cancer

This technology includes small molecule inhibitors of the cdc2-like kinase (Clk) and Dyrk kinase which can restore splicing outcomes within many dysregulated splicing events potentially reversing phenotypes associated with diseases associated with abnormal splicing. The Clks regulate the alternative splicing of microtubule-associated protein tau and are implicated in frontotemporal dementia and Parkinson's disease through the phosphorylation of splicing factors (SF).

Identification and Use of 12/15-Lipoxygenase (LOX) Inhibitors for Post-Strike Treatment

This technology includes the identification and use of 12/15-lipoxygenase (LOX) inhibitors, including ML351 and related analogs, for post-stroke treatment. The 12/15-LOX directly oxidizes lipid membranes leading to their direct attack. After a stroke, the activity of 12/15-LOX is upregulated and is thought to contribute to increased neuronal loss and blood-brain barrier leakage. A high-throughput screen was undertaken to find inhibitors, which were then subjected to medical chemistry optimization.

Compounds and Methods for Treating Brain Injury

This technology includes MRS4322, which is an A3 agonist that is currently being evaluated for treatment of traumatic brain injury. Although its affinity in the receptor is in the micromolar range, it enters the brain in sufficient concentration to activate a protective CNS receptor, A3 adenosine receptor. Potential applications of such A3 agonists could also include neurodegenerative conditions.

Replicative-Defective Mutant Human Cytomegalovirus: Potential Applications in Vaccinology and Cancer Immunotherapy

The potential applications of a replicative-defective mutant form of human cytomegalovirus (HCMV) are significant in the fields of vaccinology and cancer immunotherapy. This innovative approach involves engineering a mutant HCMV that can selectively target specific cells. Firstly, it holds promise as a vaccine candidate for protecting against HCMV infection, given the success of a similar strategy against herpes simplex virus in animal models.

Bispecific Antibody Targeting Anthrax Toxins and Capsule for Enhanced Biodefense

The technology focuses on the development of a tetravalent bispecific antibody effective against Bacillus anthracis, the bacterium responsible for anthrax. This antibody combines the specificities of two monoclonal antibodies (mAbs): one targeting anthrax protective antigen (PA) and the other targeting the bacterial capsule. The anti-PA mAb shows potent toxin-neutralizing activity, while the anti-capsule mAb efficiently kills anthrax bacteria.

A Key Advancement for Human Norovirus Research and Reverse Genetics

The HEK293T/T7 cell line is a novel development in virology research, particularly for studying human noroviruses. This cell line expresses the T7 RNA polymerase, a key enzyme used in reverse genetics systems. Unlike existing technologies, the HEK293T/T7 cell line offers the unique advantage of being able to produce functional T7 RNA polymerase, which is essential for driving transcription from T7 promoters.

Derivation of a >25 million-year-old Adeno-associated Virus Coat Protein Sequence for Gene Transfer Studies

This technology includes a novel capsid protein for recombinant adeno-associated virus (AAV)-mediated gene transfer evaluation. We have identified a "fossilized" endogenous AAV sequence element (referred to as mAAV-EVE) within the germline of an ancient lineage of Australian marsupials and have cloned and sequenced mAAV-EVE orthologs from at least fifteen lineage-specific taxa.

High Density Lipoprotein Targeting Protease Inhibitor Peptide for the Treatment of Alpha-1-antitrypsin (A1AT) Deficiency

This technology includes a novel concept and design for a lipoprotein targeting protease inhibitor for the treatment of Alpha-1-antitrypsin (A1AT) deficiency. A1AT deficiency occurs in about 1 in 2500 individuals in the United States and Europe, and people with this condition develop severe liver disease and emphysema/chronic obstructive pulmonary disease (COPD). Current treatment involves intravenous infusion of purified human A1AT protein, which is very expensive and only modestly effective.

Application of AAV44.9 Vector in Gene Therapy for the Inner Ear

This technology includes a novel AAV isolate (AAV44.9) to be used as gene therapy for the inner ear for the treatment of deafness. The ability of AAV vectors to transduce dividing and non-dividing cells, establish long-term transgene expression, and the lack of pathogenicity has made them attractive for use in gene therapy applications. Vectors based on new AAV isolates may have different host range and different immunological properties, thus allowing for more efficient transduction in certain cell types.