Sensor for Real-time Detection of Plasma Metabolites Levels for the Diagnosis and Care of Metabolic Disorders
Development of an Efficient and Affordable Protein Purification System to Study Protein Functions and Structures
Trans-auricular Left Atrial Appendage Ligation to Prevent Thrombosis
Single Scan Bright-blood and Dark-blood Phase Sensitive Inversion Recovery (PSIR) Late Gadolinium Enhancement (LGE) for Cardiovascular Magnetic Resonance (CMR) Imaging
Vascular Anchoring Introducer Sheath for Interventional Cardiac Procedures
This technology includes a device and method for maintaining access to a location in the body while reducing or eliminating the potential for pulling an access device (i.e., catheter) back through an opening, such as a cardiac procedure. An introducer sheath includes a distal indented portion and a balloon, so that once placed in a desired location through tissue, the balloon can be inflated to anchor the sheath against retraction.
Systems and Methods for Applying Pressure to the Heart for the Treatment of Tricuspid Valve Regurgitation
This technology includes structures and methods for cinching a band around the heart for treating conditions including tricuspid valve regurgitation (TR). When positioned appropriately along the atrioventricular groove, the band is tightened around the heart which narrows the tricuspid annulus and relieves TR.
Helical Guidewires and Related Systems for Transcatheter Heart Valve Procedures
This technology includes a guidewire purpose-built for delivery of bulky transcatheter heart valves (THV). Conventional THV guidewires are rigid and have a distal tip shaped like a pigtail to prevent apical ventricular perforation. This invention is a 3-dimensional helical or antihelical curve that can protect against apical perforation, possibly better, and that allows subtle 3-mensional deflection to aid the operator in achieving coaxiality or overcoming delivery obstacles such as calcific spicules.
Device for Closure of Transvascular or Transcameral Access Ports
This technology includes a novel method to access the arterial circulation to allow introduction of large devices, such as transcatheter aortic valve replacement, percutaneous left ventricular assist devices, and thoracic aortic endografts. It also can be used in most labeled and off-label applications of Amplatzer nitinol occluder devices to occlude intracardiac holes and to allow non-surgical direct access to the heart. This new disclosure adds additional design features that have been tested in vivo.
High Relaxivity Mulitivalent Gadolinium on a Peptide Scaffold for Targeted MRI Applications in Disease Diagnosis
This technology includes a peptide containing alternating Alanine and Lys(DOTA-Gd) residues can be used to increase the MRI relaxivity of a peptide. The low molecular weight construct can be appended to proteins, antibodies and peptides to increase MRI signals. This approach offers advantages over previous dendrimeric constructs.