High-Throughput Generation of Induced Pluripotent Stem Cells Carrying Antigen-Specific T Cell Receptors from Tumor Infiltrated Lymphocytes

One form of adoptive T cell therapy (ACT) consists of harvesting tumor infiltrating lymphocytes (TIL), screening and isolating TIL which display tumor antigen-specific T-cell receptors (TCR), expanding the isolated T cells in vitro, and reinfusing them into the patient for treatment. While highly active in the treatment of certain cancers (e.g., melanoma), current methods used to produce cancer-reactive T cells require significant time and may not adequately identify the desired TCRs which bind cancer targets.

New Insect Sf9-ET Cell Line for Determining Baculovirus Titers

The baculovirus-based protein expression system has gained increased prominence as a method for expressing recombinant proteins that are used in a wide range of biomedical applications. An important step in the use of this system is the ability to determine the virus infectious titer, i.e., the number of active baculovirus particles produced during an infection of the insect host cell.

Use of a Modified Adaptor Molecule LAT to Improve Immunotherapy for Cancer and Other Diseases

One problem with the development of immunotherapy for cancer or other diseases is the inability to stimulate a sufficient immune response in patients to tumor associated antigens. The Linker Adapted for T Cell Signaling molecule (LAT) has been shown to be an important molecule in T cell signaling. The inventions described and claimed in this patent application illustrate a new supportive role for LAT which may be harnessed to improve a patient's immune response to tumor-associated antigens.

Cell Lines that Constitutively Express High-Frequency KRAS and P53 Mutations and Human Leukocyte Antigens (HLAs)

Adoptive cell therapy (ACT) is a breakthrough form of cancer immunotherapy that utilizes tumor infiltrating lymphocytes (TILs) or genetically engineered T cells to attack tumor cells through recognition of tumor-specific antigens. A major hurdle in the development of ACT is the identification and isolation of T cells that recognize antigens that are expressed by tumor cells but not by healthy tissues. Current methods to identify such T cells involve extracting autologous antigen presenting cells (APCs) from patients in an expensive, laborious, and time-consuming process.

In vitro Generation of an Autologous Thymic Organoid from Human Pluripotent Stem Cells

The thymus is an integral part of the adaptive immune system as it generates T cells. Its function diminishes rapidly as the body ages, leading to a compromise of the immune system in the elderly. Reconstitution of adaptive immunity through mass production of different T cell types is therefore a therapeutic need in immunocompromised populations. Furthermore, production of T cells with specific receptors targeting cancer cells is an important cancer immunotherapy approach.

A peptide hydrogel for use in vascular anastomosis

In collaboration with surgery specialists from Johns Hopkins University, researchers at the National Cancer Institute (NCI) developed novel hydrogel compositions and methods of using them in the microsurgical suturing of blood vessels, which is particularly beneficial for surgeons in whole tissue transplant procedures. The lead candidate electropositive hydrogels, called APC1, was demonstrated in anastomosis mice models to be well tolerated, biocompatible, and non-toxic.

Anti-bacterial Treatments Using Peptide-Based Inhibitors of the STAT3-IL10 Pathway

Tuberculosis (TB) is an infectious disease that typically affects the lungs. Current therapies include a panel of antibiotics given over a range of 6-9 months. As a result of the expense of treatment, the extended timeframe needed for effective treatment, and the scarcity of medicines in some developing countries, patient compliance with TB treatment is very low and results in multi-drug resistant TB (MDR-TB). There remains a need for a faster, more effective treatment for TB.

Fatty Acid Derivatives and Their Use for the Treatment and Prevention of Autoimmune, Inflammatory, and Pain Disorders

The discovery and selection of suitable compounds for the treatment and prevention of autoimmune, inflammatory, and pain disorders is a significant challenge. Researchers at National Institute of Aging (NIA) mitigated this issue. They discovered and synthesized numerous novel fatty acid derivatives (novel small molecules) that may ameliorate these conditions and provide treatment options for these disorders. In a relevant rat model, the fatty acid derivatives developed by NIA demonstrated:

Iodonium Analogs as Inhibitors of NADPH Oxidases and other Flavin Dehydrogenases and their Use for Treating Cancer

Diverse human cancers like colorectal, pancreatic, ovarian, melanoma, and pre-cancers express NADPH oxidases (NOX) at high levels. Reactive oxygen species (ROS) produced from metabolic reactions catalyzed by NOX in tumors are essential to the tumor’s growth. Though drugs that inhibit ROS production by NOX could be effective against a variety of human cancers, these types of drugs are not widely available.