Potentiating Antibody Therapy for the Treatment of Cancer

This technology includes a strategy to target tumor cells that lost antigen following reaction with a therapeutic antibody by targeting the complement component C3d that has been deposited on target cells by the primary antibody. We previously generated a C3d-specific mouse/human chimeric antibody called C8xi and obtained proof of principle for the approach in two preclinical models. Here we summarize the generation of a new set of C3d targeting antibodies.

Modified Defensins and Their Use

The ubiquitous use of antibiotics has resulted in the selection of bacteria that are relatively resistant to these drugs. Furthermore, few drugs are effective against viral and fungal microorganisms. There is therefore a continuing need to identify novel agents that reduce or inhibit the growth of such microorganisms, or to identify ways of modifying existing agents in order to give them superior antimicrobial activities, or to identify agents that may recruit inflammatory cells.

Peptides for Treatment of Tumor Necrosis Factor alpha Mediated Inflammatory Disease

Tumor Necrosis Factor alpha (TNF-alpha) is a multifunctional cytokine that mediates inflammation, immune regulation, and cellular proliferation. This cytokine is converted to its active form by TNF-alpha converting enzyme (TACE). Pathological increases in TNF-alpha activity have been associated with a wide variety of inflammatory diseases, including inflammatory bowel disease, rheumatoid arthritis, and cancer. Inhibiting the conversion of TNF-alpha to its active form by inhibiting TACE represents a potential treatment for these diseases.

Method for the Treatment of Multiple Sclerosis

The invention relates to the discovery that humanized antibodies to the interleukin-2 receptor (IL-2R) such as (daclizumab) are effective in treating multiple sclerosis (MS). In particular, it has been discovered that patients who have failed to respond to therapy with interferon-beta show dramatic improvement when treated with daclizumab, with patients showing both a reduction in the total number of lesions and cessation of appearance of new lesions during the treatment period. Daclizumab is effective both in combination with interferon-beta and alone.

Multimeric Protein Toxins to Target Cells Having Multiple Identifying Characteristics

This technology relates to multimeric bacterial protein toxins which can be used to specifically target cells. Specifically, this is a modified recombinant anthrax toxin protective antigen (PrAg) that has been modified in several ways. First, the PrAg can be activated both by a metalloproteinase (MMP) and by urokinase plasminogen activator (uPA). Second, the native PrAg lethal factor (LF) binding site has been modified so that only a modified PrAg comprising two different monomers can bind anthrax LF.

Transgenic Mouse Models for Studying HLA-B57:01 and HLA-B15:02 Linked Immune Responses and Hypersensitivity Reactions

Transgenic mouse models expressing human HLA-B57:01 and HLA-B15:02 molecules have emerged as invaluable tools for unraveling the intricacies of immune responses and hypersensitivity reactions. The major histocompatibility complex (MHC) encoded proteins play a pivotal role in the immune system by presenting peptide fragments to T lymphocytes, and HLA-B57:01 has been associated with severe hypersensitivity reactions triggered by abacavir, a widely used anti-retroviral drug.

Bispecific Antibody Targeting Anthrax Toxins and Capsule for Enhanced Biodefense

The technology focuses on the development of a tetravalent bispecific antibody effective against Bacillus anthracis, the bacterium responsible for anthrax. This antibody combines the specificities of two monoclonal antibodies (mAbs): one targeting anthrax protective antigen (PA) and the other targeting the bacterial capsule. The anti-PA mAb shows potent toxin-neutralizing activity, while the anti-capsule mAb efficiently kills anthrax bacteria.

Modified AAV5 Vectors for Enhanced Transduction and Reduced Antibody Neutralization

Scientists at the NIH disclosed a mutated adeno-associated virus (AAV) serotype 5 by modifying sialic acid binding regions which mediate viral entry into host cells. Preliminary results from animal studies suggest that this modification can increase transduction by 3-4 folds in salivary glands and muscles, and can significantly decrease the potential of being neutralized by preexisting antibodies compared to the wild type AAV. Thus, the modified AAV5 vectors seem to be optimal for gene therapy.

A Novel Adeno-Associated Virus for Gene Therapy

Scientists at the NIH disclosed a novel adeno-associated virus (AAV) termed "44-9." AAV44-9 based vectors have high gene transfer activity in a number of cell types, including salivary gland cells, liver cells, and different types of neurons (e.g., cells of the cortex, olfactory bulb, and brain stem, and Purkinje cells of the cerebellum). These vectors can increase the transduction efficiency and decrease the potential of being neutralized by preexisting antibodies compared to the wild type AAV.

Diagnostic Test and Therapeutic Target for Sjogren's Syndrome

Sjögren's syndrome is an autoimmune disease that attacks salivary glands resulting in chronic dry mouth and dry eyes. Currently, there is no single diagnostic test to confirm the presence of Sjögren's. Physicians presently reach diagnosis after conducting a series of blood and functional tests for tear and salivary production. Diagnosis is further complicated as Sjögren's symptoms frequently mimic those of other autoimmune diseases (e.g., lupus, rheumatoid arthritis, etc.) and is often overlooked as dryness associated with medications being taken by the patient.