P2Y14 Receptor Antagonists Containing A Biaryl Core

The technology discloses composition of compounds that fully antagonize the human P2Y14 receptor, with moderate affinity with insignificant antagonism of other P2Y receptors. Therefore, they are highly selective P2Y14 receptor antagonists. Even though there is no P2Y14 receptor modulators in clinical use currently, selective P2Y14 receptor antagonists are sought as potential therapeutic treatments for asthma, cystic fibrosis, inflammation and possibly diabetes and neurodegeneration.

Reducing Bloodstream Neutrophils as a Treatment for Lung Infection and Inflammation

During lung infection, bloodstream neutrophils (PMNs) responding to infection travel to the airspace lumen. Although successful arrival of microbicidal PMNs to the airspace is essential for host defense against inhaled pathogens, excessive accumulation of PMNs in the lung contributes to the pathogenesis of several prevalent lung disorders, including acute lung injury, bronchiectasis, and COPD. Unfortunately, there is no treatment for controlling PMN accumulation in the lung.

Hybridomas to Human Immunoglobulins for SARS-CoV-2 Diagnostics and Additional Indications

Immunoglobulins play a key role in the immune system. CDC has developed and tested hybridoma cell lines (monoclonal antibody (mAb) clones) for human IgG and other immunoglobulins. The mAbs generated from those hybridomas could be used as a reagent (second Ab) of anti-human immunoglobins in a diagnostic assay for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus that causes COVID-19 (coronavirus disease 2019) and other assays that detect antigen specific antibodies from human sera.

Diagnostic Assay to Detect Group C Rotavirus in Humans and Animals—Monoclonal Antibody-based ELISA (Enzyme-linked Immunosorbent Assay)

Rotaviruses cause severe gastroenteritis in humans and animals globally. Currently, there are eight known serogroups (A-H) of rotaviruses. Group C rotavirus (GpC RV) causes sporadic cases and outbreaks of acute diarrhea in children and adults worldwide. GpC RV is also associated with diarrhea in swine. Currently, no simple and reliable diagnostic test exists for GpC RV, so disease prevalence remains unknown.

Development of a Polyclonal Antibody for Neuroligin 4 pThr707 and a Polyclonal Antibody for Neuroligin 1 pTHR739

This invention includes the generation and use of two polyclonal antibodies that specifically recognizes the phosphorylation site pThr707 of Neuroligin 4 and pThr739 of Neuroligin 1. A peptide of the site around the phosphorylation site was generated and injected into rabbits to create an immune response. Serum was collected from the rabbits that was then affinity purified. The specificity of the resulting polyclonal antibodies was then determined using biochemical techniques.

Potentiating Antibody Therapy by Targeting Complement Deposited on Cancer Cells

Monoclonal antibodies (mAbs) have become a mainstay of therapy for many cancers. However, antibody therapy is not completely effective in some applications due to loss of the target surface antigen on cancer cells. Such mAb-induced “escape variants” are no longer sensitive to the therapeutic mAb therapy. It was observed that the escape variants carried covalently bound complement activation fragments, especially C3d. NIH inventors have generated several C3d-specific mouse and rabbit monoclonal antibodies to re-target cells that have escaped from mAb therapy.

Amido compounds as RORgt Modulators for the Treatment of Th17-related Autoimmune Diseases

This technology includes a series of diphenylpropanamides as potent and selective RORgt inhibitors for the treatment of Th17-related autoimmune diseases. The retinoic acid-related orphan receptor RORgt plays an important role in the differentiation of thymocytes, lymphoid tissue inducer cells, and inflammatory T helper-expressing interleukin 17a (Th17) cells. Small molecule RORgt inhibitors may provide means to regulate Th17 mediated immune response.

Potent and selective RORgt inhibitors can be used to developed novel treatments for Th17-related autoimmune diseases

This technology includes a series of diphenylpropanamides as potent and selective RORgt inhibitors for the treatment of Th17-related autoimmune diseases. The retinoic acid-related orphan receptor RORgt plays an important role in the differentiation of thymocytes, lymphoid tissue inducer cells, and inflammatory T helper-expressing interleukin 17a (Th17) cells. Small molecule RORgt inhibitors may provide means to regulate Th17 mediated immune response.

Mounted Nitrocellulose Membrane Plates for Aqueous Acoustic Dispensing Nanoliter-Scale Reverse Phase Protein and
Biological Arrays for Antibody-Based Protein Detection and Quantification

This technology includes the enablement of the nanoliter-scale transfer of biological liquids in array format from a microplate (source plate) containing cultured cells or other protein-containing mixtures onto a nitrocellulose membrane that has been mounted within a custom-designed target plate. Using this method and the prototype nitrocellulose target plate, reverse phase protein arrays can be generated in which protein levels from each well transferred onto the membrane can be detected and quantified.

A Method for the Measurement of Cellular FMRP Levels for High Throughput Screening and Diagnosis of Fragile X Syndrome

This technology includes a precise measurement assay of cellular FMRP levels in patients, which can assist in the diagnosis and assess the severity of Fragile X syndrome (FXS). FXS is an X-linked disorder that produces intellectual disability, cognitive impairment, epilepsy, depression and anxiety. FXS is caused by mutations in the Fragile X Mental Retardation-1 (FMR1) gene that result in the absence or a loss of function of its protein product, FMRP.