Factors That Bind Intestinal Toxins

This invention discloses and covers polyphenolic compounds that will bind bacterial toxins, methods for the treatment of such infections, specifically Stx-1 toxins from STEC strains of E. coli.

Bacterial infections not only cause disease by their presence but also upon the release of toxins. The common enteric bacteria, E. coli O157:H7 releases such toxins (Stx-1) upon treatment with antibiotics. These toxins, when released into the lumen of the intestinal tract, will cause cellular damage thus increasing the severity of the infection.

DeePlexing – Extending Imaging Multiplexity Using Machine Learning

Spatial proteomics and transcriptomics are fast-emerging fields with the potential to revolutionize various branches of biology. In the last five years, various multiplex immunofluorescence and immunohistochemistry imaging methods have been developed to stain 5-60 different protein markers in a given tissue. Nonetheless, most of these techniques are iterative and can image a maximum of 3-8 markers in a single cycle, resulting in processing time of several hours to days.

Treatment of the beta-globinopathies through inhibition of RIOK3 activity

Disorders of adult beta-globin synthesis, which include sickle cell disease (SCD) and beta-thalassemia, are the most common monogenic disorders in the world. While the curative potential of bone marrow transplantation has been demonstrated, this approach is limited to a small fraction of affected patients due to the requirement for an HLA-matched donor, the highly specialized approach that requires critical infrastructure, and the high cost.

PET Imaging of lntegrin Expression with Suitably Labeled RGD Peptides for Multiple Diagnostic Purposes

This technology includes a number of dimeric RGD peptides which been developed and labeled with various PET isotopes (1BF, 68Ga, and 64Cu) for imaging integrin expression in cancer, inflammation, rheumatoid arthritis, myocardial infarct, stroke and traumatic injury. A number of these peptides have been translated into clinic for diagnosis and therapy response monitoring.

Selective A3 Adenosine Receptor Agonists for the Treatment of Chronic Neuropathic Pain and Other Conditions

This technology includes the creation and use of A3 adenosine receptor (A3AR)-selective agonists for treating chemotherapy-induced peripheral neuropathy, chronic neuropathic pain, rheumatoid arthritis, psoriasis, and other conditions. A3 receptors for adenosine are found in most cells and endogenous activation of the A3 receptors can result in apoptosis, thereby relieving the inflammation or targeting a tumor. A3AR agonists have been a promising strategy for the treatment of various diseases.

Mouse Models of Cryopyrin-Associated Periodic Syndrome (CAPS) for Drug Discovery

This technology includes mouse models that express versions of mouse cryopyrin protein containing mutations associated with human CAPS disease. We engineered mutations associated with three specific CAPS phenotypes (familial cold autoinflammatory syndrome (FCAS); Muckle-Wells syndrome (MWS); and neonatal onset multisystem inflammatory disease (NOMID)) into the mouse cryopyrin gene (called Nlrp3) to examine the roles of IL-1 β and related cytokines, and better characterize inflammasome functions.

Novel Methods for Reducing Inflammation and Treating Diseases such as Parkinson's and Alzheimer's Disease

Microglia activation leads to inflammation mediated dopaminergic degeneration in the brain of patients with Parkinson and Alzheimer's Disease. Thus Identification of drugs that reduce microglia activation could prevent or reverse neuronal degeneration in these diseases and other degenerative CNS disorders.

The Use of an Inducible Plasmid Vector Encoding for Active TGF-beta for the Treatment of Autoimmune Diseases

This application describes a composition and method for treating inflammatory bowel disease or other autoimmune diseases. The composition utilizes a vector which contains a first promoter which controls the expression of a regulatory transcription factor and a second inducible promoter which controls the expression of the gene of interest. The preferred gene of interest encodes an isoform of TGF-beta such as TGF-beta1 or TGF-beta3. The isoform of TGF-beta does not have to be hTGF-beta and can be a latent or active isoform of TGF-beta.