Radiotherapy and Imaging Agent-based on Peptide Conjugated to Novel Evans Blue Derivatives with Long Half-life and High Accumulation in Target Tissue

This technology includes a newly designed, truncated Evans Blue (EB) form which allows labeling with metal isotopes for nuclear imaging and radiotherapy. Unlike previous designs, this new form of truncated EB confers site specific mono-labeling of desired molecules. The newly designed truncated EB form can be conjugated to various molecules including small molecules, peptides, proteins and aptamers to improve blood half-life and tumor uptake, and confer better imaging, therapy and radiotherapy.

Producing Isotropic Super-Resolution Images from Line Scanning Confocal Microscopy

This technology includes a microscopy technique that produces super-resolution images from diffraction-limited images obtained from a line scanning confocal microscope. First, the operation of the confocal microscope is modified so that images with sparse line excitation are recorded. Second, these images are processed to increase resolution in one dimension. Third, by taking a series of such super-resolved images from a given sample type, a neural network may be trained to produce images with 1D super-resolution from new diffraction-limited images.

Innovative Antibody Conjugates for Targeted Therapy

This advanced technology introduces innovative antibody conjugates that redefine the possibilities of targeted therapy. By coupling therapeutic agents to engineered antibodies with highly specific binding sites, these conjugates deliver treatments directly to diseased cells while sparing healthy tissues. The result is a powerful increase in treatment efficacy, accompanied by a meaningful reduction in side effects.

Rapid Spectral Unmixing Using Spectrally Interpolated Background Reduction (SIBR) for Fluorescence Imaging

This breakthrough technology introduces Spectrally Interpolated Background Reduction (SIBR), a novel process that enables the rapid and efficient calculation of fluorescence signals from individual probes in complex, multi-labeled samples. Unlike traditional methods that require extensive computational power, SIBR provides real-time unmixing of signals from more than eight distinct fluorophores, dramatically simplifying fluorescence imaging workflows.

Innovative Antibody Conjugation Technology for Therapeutic and Diagnostic Applications

This pioneering technology introduces a novel method for conjugating antibodies, designed to dramatically enhance their therapeutic and diagnostic performance. By improving both binding efficiency and target specificity, this approach overcomes critical limitations of existing antibody-based therapies and imaging tools.

Intranasal or Inhaled Delivery of a Custom IgA Antibody for Protection Against COVID-19

This novel therapeutic technology harnesses the power of custom-engineered IgA antibodies to provide localized protection against COVID-19. Unlike conventional antibody treatments that circulate systemically, this innovation is designed for intranasal or inhaled delivery, placing protection directly at the body’s frontline of defense: the respiratory mucosa.