A Microfluidic Flow-Through Immunoassay for a Simultaneous Detection of Multiple Proteins in a Sub-Microliter Biological Sample

This invention presents a high throughput, multi-analyte microfluidic chip device. This device can be used for the detection and characterization of proteins, immuno-affinity assays as well as analyte detection in biological samples or other media. The sub-microliter volumes for use make this device applicable where biological samples are rare and difficult to obtain.

The device consists of a series of channels that are connected via communication ports for sample flow. The channels can be individually loaded with detection reagents via portals at their ends.

Cannula for Pressure Mediated Drug Delivery

Available for licensing are methods and devices for selectively delivering therapeutic substances to specific histological or microanatomical areas of organs (e.g., introduction of the therapeutic substance into a hollow organ space such as the hepatobiliary duct or the gallbladder lumen) at a controlled pressure, volume and/or rate which allows the substance to reach a predetermined cellular layer.

Polarimetric Accessory for Colposcope

In medical diagnostic procedures for examining the cervix and the tissues of the vagina and vulva, long working-distance (-30 cm) lighted binocular microscopes (colposcope) that provide up to 25x optical magnification are used to create an illuminated magnified view. Speculum dilations can give rise to specular reflections from the tissue surface, causing physicians to overlook possible abnormalities – thus decreasing the quality of a colposcopy. 

Device for Simulating Explosive Blast and Imaging Biological Specimens

Traumatic brain injury (TBI) is a major health problem.  Between 3.2 and 5.3 million people live with long-term disabilities resulting from TBI, and thus, contribute to the need to develop therapies that treat TBI-induced cellular damage. Researchers at the National Institute of Child Health and Human Development (NICHD) have developed a device that simulates the pressure waves resulting from explosions.

Isotropic Generalized Diffusion Tensor MRI

Scientists at the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD) have developed a method implemented as pulse sequences and software to be used with magnetic resonance imaging (MRI) scanners and systems. This technology is available for licensing and commercial development. The method allows for measuring and mapping features of the bulk or average apparent diffusion coefficient (ADC) of water in tissue – aiding in stroke diagnosis and cancer therapy assessment.