Intranasal or Inhaled Delivery of a Custom IgA Antibody for Protection Against COVID-19
This technology includes an IgA antibody, specifically designed to target the receptor binding domain of SARS-CoV-2, the virus causing COVID-19. Administered intranasally, this antibody has potential neutralizing activity, aiming to prevent COVID-19. IgA, an antibody class present in mucosal areas, plays a crucial role in immune defense at the initial site of viral infection. The primary application of this technology is envisioned as a therapeutic nasal spray, intended to prevent SARS-CoV-2 infection, particularly in high-risk populations.
Computational Alleviation of Depth-dependent Degradation in Fluorescence Images
This technology includes an approach that dramatically lessens the effects of depth-dependent degradation in fluorescence microscopy images. First, we develop realistic ‘forward models’ of the depth dependent degradation and apply these forward models to shallow imaging planes that are expected to be relatively free of such degradation. In doing so, we create synthetic image planes that resemble the degradation found in deeper imaging planes. Second, we train neural networks to remove the effect of such degradation, using the shallow images as ground truth.
Improvement of Axial Resolution via Photoswitching and Standing Wave Illumination
This technology includes an illuminator and reflector that enables flexible standing wave illumination on an inverted microscope stand, and procedures for using such illumination to improve axial resolution in confocal or instant SIM imaging systems. The axial resolution in conventional fluorescence microscopy is typically limited by diffraction to ~700 nm. This method that improves axial resolution ~7-fold over the diffraction limit, and that can be applied to any fluorescence microscope.
Accelerating Multiview Registration and Iterative Deconvolution to Improve Spatial Resolution and Contrast in Fluorescence Microscopy
This technology includes algorithms and software that improve the speed of iterative deconvolution, a common method for improving spatial resolution and contrast in fluorescence microscopy images. These algorithms also improve the registration of multiview datasets, and apply deep learning to accelerate spatially varying deconvolution.
PET Imaging of lntegrin Expression with Suitably Labeled RGD Peptides for Multiple Diagnostic Purposes
This technology includes a number of dimeric RGD peptides which been developed and labeled with various PET isotopes (1BF, 68Ga, and 64Cu) for imaging integrin expression in cancer, inflammation, rheumatoid arthritis, myocardial infarct, stroke and traumatic injury. A number of these peptides have been translated into clinic for diagnosis and therapy response monitoring.
A Versatile Approach to Developing in situ Therapeutic Vaccines for Personalized Cancer Immunotherapy
This technology includes a straightforward and versatile nanotechnology-based approach for in situ therapeutic vaccination that exploits a primary tumor as a vaccine depot to initiate robust personalized anti-tumor immune responses.