Synthesis and Use of Positive Allosteric Modulators to Modify D1 Dopamine Receptor Activity

This technology relates to the creation and use of newly identified ligands to the D1 dopamine receptor (D1R). The D1 dopamine receptor is linked to a variety of neuropsychiatric disorders and represents an attractive drug target for the enhancement of cognition in schizophrenia, Alzheimer disease, and other disorders. These ligands are positive allosteric modulators (PAMs) that bind to the dopamine receptor at a site other than where dopamine binds and causes the receptor to have an increased response.

Identification of a novel and selective D3 dopamine receptor-selective agonist

This technology relates to the description and therapeutic use of a small molecule that selectively binds to and activates the D3 dopamine receptor. Dopamine receptors (DARs) are members of the G protein-coupled receptor (GPCR) superfamily that play a critical role in cell signaling processes, especially modulating the transfer of information within the nervous system. Members of the DAR subfamilies share high sequence homology, especially the D2 and D3 DARs. Most currently available dopaminergic drugs cross-react with both subtypes to varying degrees.

Small Molecule Inhibitors of Clk and Dyrk Kinases for Potential Therapeutic Intervention of Down Syndrome, Alzheimer's Disease and Cancer

This technology includes small molecule inhibitors of the cdc2-like kinase (Clk) and Dyrk kinase which can restore splicing outcomes within many dysregulated splicing events potentially reversing phenotypes associated with diseases associated with abnormal splicing. The Clks regulate the alternative splicing of microtubule-associated protein tau and are implicated in frontotemporal dementia and Parkinson's disease through the phosphorylation of splicing factors (SF).

Identification and Use of 12/15-Lipoxygenase (LOX) Inhibitors for Post-Strike Treatment

This technology includes the identification and use of 12/15-lipoxygenase (LOX) inhibitors, including ML351 and related analogs, for post-stroke treatment. The 12/15-LOX directly oxidizes lipid membranes leading to their direct attack. After a stroke, the activity of 12/15-LOX is upregulated and is thought to contribute to increased neuronal loss and blood-brain barrier leakage. A high-throughput screen was undertaken to find inhibitors, which were then subjected to medical chemistry optimization.

Potential New Drugs for Treating or Preventing Pruritus

NIH scientists have identified new compositions that could potentially be used to treat or prevent pruritus (itchiness). The newly discovered compounds can block a newly identified itch pathway and might be effective for persistent itch caused by psoriasis, atopic dermatitis, renal failure, liver cirrhosis and chemotherapy. These compounds are different from commonly used antihistamines which induce drowsiness and sedation. These compounds have the potential to be used for human and animals.

Deuterated alpha5 Subunit-selective Negative Allosteric Modulators of Gamma-Aminobutyric Acid Type A Receptors as Fast Acting Treatments for Depression and Mood Disorders

This technology includes GABAa a5 Negative Allosteric modulators (GABAa a5 NAMs) which have been recently discovered to act as fast-acting antidepressants in a variety of mouse models of depression. These NAMs are actively metabolized in vivo. This invention involves the conceptualization and synthesis of GABAa a5 NAM molecules with a deuterium in the active metabolic position. This significantly increased the metabolic stability, while still retaining the antidepressant activity.

A Highly Efficient Differentiation Protocol for Placental Cells Derived from Human Pluripotent Stem Cells

This technology includes a robust and highly efficient protocol that differentiates human pluripotent stem cells (hPSCs) into the developmental precursor of placental cells, the trophectoderm (TE), under chemically defined conditions. The in vitro generation of TE cells holds great promise for modeling diseases of the placenta, drug screening, and cell-based therapies.

Glucocerebrosidase Activators as a Treatment for Gaucher Disease

This technology is a collection of small molecule activators of a genetically defective version of the enzyme called glucocerebrosidase (GCase), which causes Gaucher disease. Gaucher disease is a rare disease affecting 1 in 40,000 babies born. Ashkenazi Jews of eastern European descent (about 1 in 800 live births) are at particular risk of carrying this genetic defect. It is caused by inherited genetic mutations in the gene that encodes GCase, which result in reduced activity of the enzyme.

CD206 Small Molecule Modulators, Their Use and Methods for Preparation

Pancreatic ductal adenocarcinoma (PDA) accounts for more than 90% of pancreatic cancer cases, and it is one of the most aggressive malignancies with a 5-year survival rate of 6%. The high mortality rate caused by PDA is primarily from the lack of early diagnosis – it is often asymptomatic in early stages – and a poor response to conventional chemotherapy and radiotherapy. One of the major immune cell types present in the PDA microenvironment is a subset of macrophages commonly termed tumor-associated macrophages (TAM).