Potential New Drugs for Treating or Preventing Pruritus

NIH scientists have identified new compositions that could potentially be used to treat or prevent pruritus (itchiness). The newly discovered compounds can block a newly identified itch pathway and might be effective for persistent itch caused by psoriasis, atopic dermatitis, renal failure, liver cirrhosis and chemotherapy. These compounds are different from commonly used antihistamines which induce drowsiness and sedation. These compounds have the potential to be used for human and animals.

Deuterated alpha5 Subunit-selective Negative Allosteric Modulators of Gamma-Aminobutyric Acid Type A Receptors as Fast Acting Treatments for Depression and Mood Disorders

This technology includes GABAa a5 Negative Allosteric modulators (GABAa a5 NAMs) which have been recently discovered to act as fast-acting antidepressants in a variety of mouse models of depression. These NAMs are actively metabolized in vivo. This invention involves the conceptualization and synthesis of GABAa a5 NAM molecules with a deuterium in the active metabolic position. This significantly increased the metabolic stability, while still retaining the antidepressant activity.

A Highly Efficient Differentiation Protocol for Placental Cells Derived from Human Pluripotent Stem Cells

This technology includes a robust and highly efficient protocol that differentiates human pluripotent stem cells (hPSCs) into the developmental precursor of placental cells, the trophectoderm (TE), under chemically defined conditions. The in vitro generation of TE cells holds great promise for modeling diseases of the placenta, drug screening, and cell-based therapies.

Glucocerebrosidase Activators as a Treatment for Gaucher Disease

This technology is a collection of small molecule activators of a genetically defective version of the enzyme called glucocerebrosidase (GCase), which causes Gaucher disease. Gaucher disease is a rare disease affecting 1 in 40,000 babies born. Ashkenazi Jews of eastern European descent (about 1 in 800 live births) are at particular risk of carrying this genetic defect. It is caused by inherited genetic mutations in the gene that encodes GCase, which result in reduced activity of the enzyme.

2-substituted Pyridines and Their Methods for Inhibiting BMP Signaling for the Treatment of Fibrodysplasia Ossificans Progressiva

This technology includes the use of a new class of molecules (nanomolar ALK2 inhibitor) to impede bone morphogenetic proteins (BMP) signaling for the treatment of Fibrodysplasia ossificans progressiva (FOP). FOP is a rare disease, characterized by malformation of the great (big) toes during embryonic development. Individuals with FOP have an identical heterozygous activating mutation (R206H) in the gene encoding ACRV1 (also known as ALK2), a BMP type 1 receptor.

Naphthalene-containing Selective Inhibitors of BMP type 1 Receptors for the Treatment of Fibrodysplasia Ossificans Progressiva

This technology includes the use of a new class of molecules (nanomolar ALK2 inhibitor) to impede bone morphogenetic proteins (BMP) signaling for the treatment of Fibrodysplasia ossificans progressiva (FOP). FOP is a rare disease, characterized by malformation of the great (big) toes during embryonic development. Individuals with FOP have identical heterozygous activating mutation (R206H) in the gene encoding ACRV1 (also known as ALK2), a BMP type 1 receptor.

Pyrazolo[1,5-a]pyrimidine Derivatives as Selective ALK Kinases Inhibitors for Inhibition of the Bone Morphogenetic Proteins Signaling Pathway for Treatment of Fibrodysplasia Ossificans Progressiva

This technology includes compounds which are selective inhibitors of anaplastic lymphoma kinases (ALK1, ALK2, ALK3 and ALK6), which inhibit these ALKs with low nanomolar potency. These compounds could be developed as a treatment of Fibrodysplasia ossificans progressiva (FOP) and other BMP-related diseases. FOP is a rare congenital disease with no current treatment options. Since the disease is driven by constitutively active ALK2, inhibition of ALK2 would be like hitting the Achilles’ heel of the disease and would potentially be an efficacious therapy for FOP patients.

Using FDA-approved Small Molecule Drug Reserpine and related compounds (especially Halofantrine) To Protect Photoreceptors In Inherited Retinal Degenerations And Age-Related Macular Degeneration

Summary: 
The National Eye Institute seeks research co-development partners and/or licensees for a therapy using an FDA-approved small molecule drug reserpine (and related compounds especially halofantrine) that prevents photoreceptor cell death in retinal degenerations.

CD206 Small Molecule Modulators, Their Use and Methods for Preparation

Pancreatic ductal adenocarcinoma (PDA) accounts for more than 90% of pancreatic cancer cases, and it is one of the most aggressive malignancies with a 5-year survival rate of 6%. The high mortality rate caused by PDA is primarily from the lack of early diagnosis – it is often asymptomatic in early stages – and a poor response to conventional chemotherapy and radiotherapy. One of the major immune cell types present in the PDA microenvironment is a subset of macrophages commonly termed tumor-associated macrophages (TAM).

Autophagy Modulators For Use in Treating Cancer

Cancer cells can upregulate autophagy – cell destruction – as a response to chemotherapy. Investigators in Dr. Melvin DePamphilis’ laboratory at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) have shown that compounds identified by screening a library of compounds blocks autophagy in some cancer cells (e.g., melanoma) but are not toxic to normal cells. Cancer cells with mutations in the BRAF oncogene are especially dependent on autophagy. Treatment of cancer cells with the BRAF mutation can increase the efficacy of chemotherapy.