Laminin A Peptides
SARS-CoV-2 Pseudotyping Plasmids for Cutting-Edge Studies
NIAID scientists have developed plasmids that allow for production of pseudoviruses expressing SARS-CoV-2 spike protein. As SARS-CoV-2 is a lethal airborne virus, it must be handled in high-containment Biosafety Level 3 (BSL-3) laboratories that require strict airflow, ventilation and decontamination procedures.
Bispecific Antibody Targeting Anthrax Toxins and Capsule for Enhanced Biodefense
The technology focuses on the development of a tetravalent bispecific antibody effective against Bacillus anthracis, the bacterium responsible for anthrax. This antibody combines the specificities of two monoclonal antibodies (mAbs): one targeting anthrax protective antigen (PA) and the other targeting the bacterial capsule. The anti-PA mAb shows potent toxin-neutralizing activity, while the anti-capsule mAb efficiently kills anthrax bacteria.
A Key Advancement for Human Norovirus Research and Reverse Genetics
The HEK293T/T7 cell line is a novel development in virology research, particularly for studying human noroviruses. This cell line expresses the T7 RNA polymerase, a key enzyme used in reverse genetics systems. Unlike existing technologies, the HEK293T/T7 cell line offers the unique advantage of being able to produce functional T7 RNA polymerase, which is essential for driving transcription from T7 promoters.
Derivation of a >25 million-year-old Adeno-associated Virus Coat Protein Sequence for Gene Transfer Studies
This technology includes a novel capsid protein for recombinant adeno-associated virus (AAV)-mediated gene transfer evaluation. We have identified a "fossilized" endogenous AAV sequence element (referred to as mAAV-EVE) within the germline of an ancient lineage of Australian marsupials and have cloned and sequenced mAAV-EVE orthologs from at least fifteen lineage-specific taxa.
High Density Lipoprotein Targeting Protease Inhibitor Peptide for the Treatment of Alpha-1-antitrypsin (A1AT) Deficiency
This technology includes a novel concept and design for a lipoprotein targeting protease inhibitor for the treatment of Alpha-1-antitrypsin (A1AT) deficiency. A1AT deficiency occurs in about 1 in 2500 individuals in the United States and Europe, and people with this condition develop severe liver disease and emphysema/chronic obstructive pulmonary disease (COPD). Current treatment involves intravenous infusion of purified human A1AT protein, which is very expensive and only modestly effective.