Novel Therapeutic Compounds for Treatment of Cancer and Immune Disorders

The global market for cancer therapeutics is over $40 billion and is anticipated to continue to rise in the future. There remains a significant unmet need for therapeutics for cancers that affect blood, bone marrow, and lymph nodes and the immune system, such as leukemia, multiple myeloma, and lymphoma. The proteasome inhibitor bortezomib, which may prevent degradation of pro-apoptotic factors permitting activation of programmed cell death in neoplastic cells dependent upon suppression of pro-apoptotic pathways, has been a successful mode of treatment for such cancers.

A Computer Program to Predict Optimal Sites on Protein Sequences for Production of Peptide-Directed Antibodies (NHLBI AbDesigner)

The invention offered for licensing is a computer program called "NHLBI AbDesigner" that allows the user to input a unique identifier for an individual mammalian protein to be analyzed in order to find out what short peptides in its amino sequence would most likely result in a strong immunogenic response when injected into a research animal. The software displays standard predictors of immunogenicity and antigenicity in easy-to-view heat maps and also allows users to choose peptides most likely to elicit antibodies that are specific to said protein.

Selective 12-Human Lipoxygenase Inhibitors for the Treatment of Diabetes and Clotting

This invention discloses small molecule inhibitors of human 12-lipoxygenase (12-hLO). 12-lipoxygenase expression, activation, and lipid metabolites have been implicated in type 1 and type 2 diabetes, cardiovascular disease, hypertension, Alzheimer’s, and Parkinson’s disease. The development of 12-hLO inhibitors may be a potent intracellular approach to decreasing the ability of platelets to form large clots in response to vessel injury or activation of the coagulation pathway.

Single Channel MRI Guidewire

The invention offered for licensing and commercial development is in the field of Interventional Magnetic Resonance Imaging (“iMRI”). More specifically the invention discloses a guidewire for magnetic resonance imaging with a single channel design to reduce complexity and to provide conspicuous tip visibility under MRI. In the design of the present device, the guidewire body includes an antenna formed from a rod and a helical coil coupled together. The helical coil can have multiple windings without a gap between the windings.

Improved Standard for Immune System Recovery Assay

Monitoring an immune system that has been depleted by infection (e.g., HIV), chemotherapy, or progenitor cell transplantation is vital to assessing individual’s recovery status. This technology provides a new plasmid standard to be used as part of the existing TREC assay. This new plasmid has a shorter insert than the commercially available one, which means it now matches the PCR product generated in the qPCR reaction in the TREC assay. Additionally, the new plasmid is easier to grow up than the existing standard.

Methods and Devices for Transcatheter Cerclage Annuloplasty

The invention relates to techniques and devices for cardiovascular valve repair, particularly annuloplasty techniques and devices in which tensioning elements are positioned to treat regurgitation of the mitral valve or tricuspid valve. More specifically, the technology pertains to a new device for myocardial septal traversal ("cerclage reentry") that also serves to capture (ensnare) and externalize the traversing guidewire.

Mouse IL-12p40 Expressing Cell Line

The subject invention is a recombinant human 293T cell line that expresses mouse IL-12p40 protein to high levels. IL-12p40 is a subunit of both Interleukin-12 (IL-12) and IL-23; however, it can also be expressed as a monomer (IL-12p40) and as a homodimer (IL-12p80). IL-12p40 is produced mainly by antigen presenting cells such as macrophages, neutrophils, microglia, and dendritic cells in response to pathogens or inflammatory agents. It is an immunostimulatory messenger molecule that can disseminate in the body and signal the presence of a pathogen.

Mouse Model for Cerebral Cavernous Malformation, an Inherited Brain Disorder

Cerebral Cavernous Malformation (CCM) is a brain disease affecting up to 0.5% of the worldwide population. CCM is characterized by grossly dilated vessels prone to leaking and hemorrhage which result in severe headaches, seizures, and strokes. Inherited forms of the disease are due to mutations in one of three loci, CCM1, CCM2, and CCM3. Prior efforts to develop mice with targeted null mutations in Ccm1, Ccm2, or Ccm3 have been unsuccessful, as such mutations result in embryonic death.

Novel Small Molecule Inhibitors for the Treatment of Huntington’s Disease

This technology is a collection of small molecules screened for their ability to prevent or reduce the cytotoxic effects of the protein, Huntingtin. Huntington's disease is a neurodegenerative disorder due to a dominantly acting expansion of a CAG trinucleotide repeat in exon 1 of the Huntington (HTT) gene resulting in production of the altered (mutant) protein Huntingtin, which has a long chain of polyglutamine (poly Q) attached to the exon 1 encoded protein sequence.