qPCR Assay for Detection of JC Virus

JC Virus causes a fatal disease in the brain called progressive multifocal leukoencephalopathy (PML) that occurs in many patients with immunocompromised conditions. For example, more than five percent (5%) of AIDS patients develop PML. Additionally, these conditions include, but are not limited to, cancers such as leukemias and lymphomas, organ transplants such as kidney, heart and autoimmune conditions with treatment that modulates the immune system such as Multiple Sclerosis (MS), rheumatoid arthritis, psoriasis, and systemic lupus erythematosus.

A Locking Device for Permanently Securing Surgical Suture Loops

This technology relates to a device that can be used to non-invasively secure surgical suture loops when combined with a percutaneous delivery system. It has been shown to be effective in correcting mitral valve regurgitation (MVR) in an animal model. During the procedure, a guidewire is percutaneously conveyed to the atrium of the heart and is used to secure the "cerclage" suture encircling the mitral valve annulus, which is delivered using a delivery catheter.

Methods for Treating or Ameliorating Fibrosis by Inhibiting the Interaction between IL-21 Receptor (IL-21R) and IL-21

This invention includes methods for treating or ameliorating fibrosis by inhibiting the interaction between IL-21 Receptor (IL-21R) and IL-21 using either anti-IL-21R monoclonal antibodies (or binding fragments of anti-IL-21R mAbs), anti-IL-21 monoclonal antibodies (or binding fragments of anti-IL-21 mAbs) or soluble IL-21R (or binding fragments of IL-21R). It is believed that the TH2 immune response, induced by IL-21, plays a major role in the in the pathogenesis of tissue fibrosis.

Recombinant Vaccines Based on Poxvirus Vectors

The technology offered for licensing is foundational in the area of recombinant DNA vaccines. In the last several years, facilitated through a licensing program of the NIH, the technology has been broadly applied in the development and commercialization of several novel human and veterinary vaccines in the areas of infectious disease as well as cancer therapeutics. The NIH wishes to expand its licensing program of the subject technology in a variety of applications that will benefit public health.

Multilayered RF Coil System for Improving Transmit B1 Field Homogeneity in High-Field MRI

Available for licensing and commercial development is a multilayered radio-frequency (RF) coil system for improving the transmit B1 field homogeneity for magnetic resonance imaging (MRI) at high field strengths. The current invention aims at manipulating the inhomogeneous profile of the transmit B1 field, which causes MR images to become less uniform as the magnetic field strength is increased, by utilizing an inner array of RF elements (e.g. surface coils) within and coupled to an outer transmit unit (e.g. a birdcage coil or other volume coil).

Biological/Research Material for H1N1 Influenza Virus Vaccine Research

Offered for licensing is a recombinant attenuated vaccinia virus, MVA, that expresses the haemagglutinin (HA) and nucleoprotein (NP) of influenza virus A/PR/8/34 (H1N1). The virus has been shown to stimulate protective immunity to influenza virus in mice.

The materials can be used for research purposes and in particular in the area of influenza virus vaccines.

The related publications listed below demonstrate the usefulness of this biological material in influenza virus vaccine research.

Monoclonal Antibodies That React With the Capsule of <i>Bacillus anthracis</i>

Bacillus anthracis is the causative agent of anthrax and is surrounded by a polypeptide capsule of poly-gamma-D-glutamic acid (gammaDPGA). gammaDPGA is poorly immunogenic and has antiphagocytic properties. The bacterial capsule is essential for virulence. Antibodies to the capsule have been shown to enhance phagocytosis and killing of encapsulated bacilli. These antibodies in combination with antibodies that neutralize the toxins of B. anthracis could provide enhanced protection by their dual antibacterial and antitoxic activities.

RORgamma (RORC) Deficient Mice Which Are Useful for the Study of Lymph Node Organogenesis and Immune Responses

The retinoid-related orphan receptor gamma (RORgamma) is a member of the nuclear receptor superfamily. NIH investigators used homologous recombination in embryonic stem cells to generate mice in which the RORgamma gene was disrupted. RORgamma deficient mice lack peripheral and mesenteric lymph nodes and Peyer's patches indicating that ROR expression is indispensable for lymph node organogenesis. In addition, RORgamma is required for the generation of Th17 cells which play a critical role in autoimmune disease.

Vaccines Against Malarial Diseases

The invention offered for licensing is in the field of use of vaccines for malaria. The invention provides gene sequences encoding an erythrocyte binding protein of a malaria pathogen for the expression of the erythrocyte binding protein. The codon composition of the synthetic gene sequences approximates the mammalian codon composition. The synthetic gene sequences are useful for incorporation into DNA vaccine vectors, for the incorporation into various expression vectors for production of malaria proteins, or both.